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I. SUMMARY
The active stabilization of rotating stall and surge has been studied with the aim of

increasing the stable operating range of aircraft engine compression systems and thereby realizing
improved performance and decreased weight. The work during this contract has progressed from
theoretical speculation, through experimental investgaton, development of contol procedures,
large scale demonsuraton, and the evaluaton of altemate control approaches.

The initial efforts centered on establishment of the mechanisms by which axial
compressors enter rotating stall. In particular, the linear 2-D suability theory of Moore and Greiuzer
was shown to maich well with data from low speed axial compressors measured at MIT and high
speed data provided by an engine company. It was realized that the compressor stability could be
thought of in terms of an oscillator (second order system) rotating about the compressor annulus.
Disturbances would manifest themselves as small amplitude waves wavelling about the
compressor annulus with the mature form of the waves being rotating stall. Thus, the compressor
stability would be equivalent to the wave stability, which is exactly what was found
experimentally. The linear assumptions of the model (used for mathematical simplicity) were then
relaxed and the nonlinear form was shown to explain the differences observed in the stall inception
process in different compressors described in the literature.

Using the Moore-Greitzer hydrodynamic stability theory as a starting point, a rotating stall
control system was designed for a single-stage, low speed research compressor. The low
amplitude circumferential travelling waves were sensed by a computer which then “wiggled” a
circumferential array of individually actuated vanes so as to damp the travelling waves, thereby
increasing the stability of the compressor. The small amplitude (linearity) of the waves was
exploited by breaking the waves into spatial Fourier components, and centrolling each spatial
Fourier component separately. This approach succeeded in extending the flow range of the
compressor by 25%. This was the first time that compressor rotating stall was successfully

stabilized.
This control approach was then extended to a three-stage research compressor. The data




from this experiment was used to refine the Moore-Greitzer stability theory, in particular t0 include
the effect of time lags within the compressor. The modified theory was shown to quanttaovely
agree well with the experimental stabiliry data including predicton of the onset of instability (i.e.
predicting when the compressor will go into rotating stall).

The above-described experiments were greatly aided by the development of control
theoretic models of the compressor and the application of parameter idenafication methodology to
compressor fluid mechanics. Specifically, state-space models of the compressor stabiliry were
formulated which nroved very accurate, contributing in no small way to experimental gains
realized. The high speed actuators were used to excite the compressor open loop and thereby
established the forced response characteristic of the system. The measured system characterisucs
were shown to closely match those calculated from the modified hydrodynarnic stability model.
Given the system characteristics (either measured or calculated) and the control model framework,
then the controller design could be carried out in a straightforward and systematic manner. The
experimental controlled compressor performance was then shown to match well with that
predicted by the control design.

Since the theoretical models of the controlled compressor were shown to agree well with
data, the model could be used to explore alternate strategies for the active stabilizaoon of
compressors. Variables studied included the selection and placement of actuators and sensors, the
effects of control bandwidth constraints, and the role played by the disturbance structure exciting
the compression systems. Both surge and stall control were examined. In all cases, mass flow
was the most effective variable to be sensed. For surge, actuators mostly closely coupled to the
compressor worked best such as a close-coupled valve or mass injection at the inlet. For rotating
stall, a peripheral array of jets at the compressor inlet, injecting both mass and momentum, proved
the most effective, extending the stable operating range of the compressor by a factor of four over
that demonstrated on the three-stage compre.;»sor equipped with wiggly guide vanes as actuators,
These calculations highlighted the importance of adequate control system bandwidth, showing that

the actuators must respond at least three times faster than the system characteristic frequency (the




engine Helmholtz frequency for surge, the wave rotation rate for stall). These bandwidths are
extremely challenging for the current actuator state of the art.

Understanding surge and rotating stall in the context of a second order system instability is
a powerful concept which enables new approaches to these old problems. One such approach is wo
damp the perturbations in this fluid oscillator by coupling it 1o a structural oscillator with suitable
dynamic characteristics. This is analogous to the tuned pendulurmn damper concept employed on
WWII aircraft piston engines. Surge control was studied first and several concepts were
analytically evaluated, including moving walls, throttle valves, and Helmholtz resonators. A
moving plenum wall concept was implemented expenimentally, with the wall engineered to have
the proper dynamic characteristics {frequency, damping, phase shift, etc.) as predicted by linear
theory. A nonlinear simulation was also performed to evaluate such phenomena as friction. The
moving wall structural damper worked quite well and proved as effective as active conool in
extending the surge-free operating range of the centrifugal compressor on which it was tested. The
experimental results agreed well with the theoretical predictons.

This approach of using tailored structural dynamics to damp fluid mechanic instabilities
has been extended to two-dimensional disturbances - rotating stall. Several concepts were
evaluated analytically. Then, a single-stage research compressor was outfitted with a peripheral
array of jets on the outer annulus wall, upstream of the rotor. The jets are controlled by composite
reed valves actuated by local pressure perturbations. The structural dynamics of the valves are
such that jet amplitude and phase shift are those needed to damp the incipient rotating stall.
Although the experiments are still in the preliminary phase, initial results are quite promising,
showing a 7% increase in the compressor stable operating range due to the dynamic behavior of
the structurally controlled jets.

The active stabilization of compressors has progressed quite far over the course of the
work described herein. There are still challenges ahead, both in the basic research and applied

arceas.
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1. H. Garnier
A. H. Epstein

E. M. Greitzer

Gas Turbine Labbratnry.
Massachusents institute of Technoiogy,
Cambnage. MA 02139

Rotating Waves as a Stall
Inception Indication in Axial
Compressors

Stail inception has been studied in two low-speed compressors {a single-stage and
a three-stage) and in a high-_peed three-stage compressor, using temporally and
spatially resolved measurements. In all three machines, rotating stall was preceded
by a period in which small-amplitude waves were observed traveling around the

* circumference of the machine at a speed slightly less than the fully deveioped rotaning

stoll cell speed. The waves evolved smoothly into roteting statl without sharp changes
in phase or amplitude, implying that, in the machines tested, the presiall waves and
the fully developed rotating stall are two siages of the same phenomenon. The
growth rate of these disturbances was in accord with that predicted by current
analytical models. The prestall waves were observed both with uniform and with
disiorted inflow, but were most readily discerned with uniform inflow. Engineering
uses and limitations of these waves are discussed.

Introduction

Axial compressors are subject to two distinct aerodynamic
instabilities, rotating stall and surge, which can severely limit
compressor performance. Rotating stall is characterized by a
wave traveling about the circumference of the machine, surge
by a basically one-dimensional fluctuation in mass flow through
the machine. Whether these phenomena are viewed as distinct
(rotating stall is local to the blade rows and dependent only
on the compressor, while surge involves the entire pumping

- system: compressor, ducting, plenums, and throttie) or as re-
lated (both are eigenmodes of the compression system with
surge being the zeroth order mode), they cannot be tolerated
during compressor operation. Both rotating stall and surge
reduce the pressure rise in the machine, cause rapid heating

- of the blades, and can induce severe mechanical distress.

The instabilities are commonly avoided by operating the - -
- compressor at a reduced pressure rise 3o as to leave a safety -

margin, the so-called ‘‘surge margin,’’ between the operating
point of the compressor and the point at which the machine
surges. The requirement for surge margin reduces the available
operating pressure rise from a given machine and often reduces
the operating efficiency as well. Reduction of surge margin
can then transiate directly into compressor weight and effi-
ciency improvement so that there is practical incentive to re-
ducing the surge margin required. In the bhigh-speed
compressors common to aircraft engines, rotating stall and
surge are closely coupled. As the machine moves along a con-
stant speed operating line toward lower mass flow (Fig. 1), it
generally first encounters rotating stall, which then (loosely)

N

Contributed by the international Gas Turbine [astitute and presentad at the
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“‘triggers’’ the surge, often after only one or two rotor revo-
lutions. Thus, surge and stall must both be considered; the
compressor surge line could really be considered the rotating
stall line, and the surge margin as stall margin.

We are aware of several alternate approaches under inves-
tigation for reducing the stall margin required. They can be
considered to fall into one of two categories: those based on
moving the operating point clcse to the stall line in situations

.. Operating Pont
7 With Statl Warning
’ .

Norma!
_— Operating Point -

Pressute Rise (y)

Mass Flow (4)

Fig.1 Compressor performancs is charscterized by the constant speed
fine shown (solid line); the comprassor cannot be sately operated to the
foft of the surge iine
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when surge and stall do not threaten, and those based on
moving the surge line itself and thus increasing the stabie range
of the compressor. Efforts in the former category include: (a)
a real-time assessment of the stall margin by correlation of the
instantaneous aircraft flight parameters with the measured
compressor stall behavior; and () stall avoidance in which the
control system detects rotating stall and then quickly moves
the compressot operating point away from stall.

Dynamic compressor stabilization is based on an alternate
approach. Here, the stall point is moved to Jower mass flows
by active feedback control. This scheme, and stall avoidance
also, rely on the use of real-time measurements within the

compressor to assess the machine stability. Clearly, the earlier

a control system can detect a stall or even an incipient stall,
the more effective (and less demanding) the control becomes.

This paper describes an experimental study of the rotating
stall inception and growth process in three axial compressors.

Its goals were both to illuminate the manner in which stall cells .

are born and develop, as well as to establish, as suggested by
theory, whether real-time information can be extracted from
the compressor, which would warn of an impending stall before
the stall actually developed. This stall warning or *‘precursor’’
couid have significant practical benefit if the warning is suf-
ficiently in advance of the stall so as to permit time for control
system résponse. The longer the warning, the greater the po-
tential utility.

In the following sections, we review the relevant theoretical
background on rotating stall development, describe the ex-
perimental arrangement, present data for three compressors
under a variety of operating conditions, and finally comment
on the generality of these findings and their usefulness.

Background

A large amount of experimental data taken over the last 20
years shows that, if measured at a single point in the com-
pressor, rotating stall is seen as a sudden event with a growth
period on the order of the stall cell period. Stall detection
schemes based on this sort of measurement have thus not been
successful in providing appreciable warning time. During the
same period, however, a theoretical basis for the description
of rotating stall has arisen based on the understanding of
rotating stall as one class of the natural instabilities of the
compression system. At its current state of development (e.g.,
Moore and Greitzer, 1986), the model describes the time ev-
olution of surge and rotating stall in a compressor treated
mathematically as a two-dimensional incompressible device
(i.e., large hub-to-tip ratio), with three-dimensional phenom-
ena represented only through empirical inputs. The results of
a prediction by this modei for a representative three-stage
compressor (Fig. 2) show an instability evolving as a small-
amplitude wave in axial velocity, which grows as it travels
around the circumference of the compressor until, through
nonlinear interaction, it causes & large-amplitude disturbance

in annulus average axial velocity (surge). This type of model -

provides the background for the present work.

Flow
Coathicient

Fig. 2 The time evolution of the nondimansionsi axiel vetoeity (C,/U)
disiribution about the circumtersnce (0 % § s 2n) of & three-stage com-
eessor during Comprassion system Insiablilty; mean level of U proy
to (nstadliity Is 0.5 -

As shown in the appendix, we can describe the stability of
a compressor in terms of the time evolution of an asymmetric
perturbation of the velocity potential, $, namely

8= 3 byleter (et )

1kt ap

Each Fourier mode (k) is the product of two exponentials. The
term exp(ilkf — w.f]) represents a traveling wave function of
circumferential position {6) and time (£); w, is the wave fre-
quency, The term exp{lkin — a.f) gives the dependence of
the wave on axial position (1) and time; o, is the damping of
the wave. Equation (1) can be viewed as analogous to the
behavior of an oscillator rotating about the circumference of
the compressor. The growth of the wave {i.¢., the stability of
the compressor) is determined by the instantaneous damping
. When the damping is negative, oscillations gro.v and the
{.9w in the compressor is unstable. Active control schemes aim
to increase this damping. Here we make use of equation (1)
in designing an experiment to detect the rotating waves and
measure the instantanecus stability of the compressor.

McDougall (1988) and McDougall et al. (1990) were the first
persons known to the authors to have made measurements of
these rotating waves. Examining 8 single-stage, low-speed com-
pressor, he fouad small disturbances rotating about the ma-
chine just prior to thé onset of stall, in qualitative accord with
the above theory. He included a good summary of previous
experimental work.

To explore the use of the traveling waves as a stal] precursor
or warning, we pose the following questions:

* Do prestall waves exist in most (many, all) compressors?
- ® At what rate do these waves grow? How long do they

persist?

& At what rate do they travel?

e How can they be observed?

Nomenclature

a,, by = Fourier components of dis-

turbance velocity potential ¥ = measured axial velocity tio {see equation (1))
¢« = Fourier component of axial n = nondimensional axial coordi- ¢ = compressor flow coefficient
velocity.disturbance nate = axial distance/R = axial velocity/U
k = harmonic number @ = circumferential coordinate 4 = nondimensional compressor
&P = pressure perturbation A\, 4 = compressor inertia parame- velocity potential
R = compressor midspan radius ters ¥ = compressor pressure rise =
u = axial velocity perturbation £ = nondimensional time = Poy = Plae/Viel?
(see Appendix) {time « U)/R w = nondimensional frequency =

U = rotor speed at midspan

Journal of Turbomachinery

¢ = nondimensional damping ra-

frequency « (U/R)
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Fig. 3 Compressor charactesistics of the two low-speed compressors
axamined (n this study

® How s this behavior affected by inlet distortion and mass
flow transients?
* Do high-speed (compressxble) machines behave simi-
farly? .
In sum, these questions address both the basic assumptions
inherent in the Moore/Greitzer model and its utility in pro-
viding real-time warning of an impending compressor stall. In
the following, we experimentally examine these issues.

Experimental Apparatus

Pres:all behavior of three compressors were exarmned two
low-speed and one high-speed machine. The low-speed, single-

stage compressor consisted of IGV’s, rotor, and stator. It is’

described in more detail by Johnson and Greitzer (1987) and
Lee (1988). The low-speed, three-stage compressor is described
by Gamache and Greitzer (1986) and Lavrich (1988). Nondi-
mensional inlet total to exit static pressure compressor char-
acteristics are shown for the two machines in Fig. 3. Both low-

speed compressors were operated at tip speeds below 100 m/-

s, so that compressibility effects were negligible. The high-
Speed, three-stage compressor is a modern experimental design
run a¢ Pratt & Whitney Div., United Technologies Coip. This
machine was equipped mth fast-acting bleed valves, which
quickly moved the operating point away from stall when it
occurred to prevent mechanical damage. Experiments on that
machine were conducted by Pratt & Whitney personncl and
the raw data provided to the authors. .

Instrumentation
All the compressors were outfitted with standard time-av-

eraged instrumentation to provide the steady-state operating
characteristics of the machines. Time-resolved instrumentation

292/ Vol. 113, APRIL 1991

consisted of hot-wire anemormeters in the jow-speed compres-
sors (oriented so as to measure axial velocity), and wall-
mounted, high response, static pressure transducers in the high-
speed compressor. The high-speed machine had eight trans.
ducers mounted about the circumference at each of four axial
stations. The low-speed machines had either eight hot wires at
a time at one axial station o« three rows of four mounted at
varigus stations. The low-specd data were digitized in real time
(with suitable low pass anti-aliasing filters), while the high-
speed data were first recorded on analog magneuc tape. All
data were d-¢ coupled.

The hot wires were calibrated in piace prior to each test to
a velocity accuracy of =3 percent. The net resolution of the
anemometers was 0.8 percent of the average prestall axiaj ve-
locity. The pressure transducers in the high-speed experiment
were calibrated by Pratt & Whitney personnel. One pressure
transducer had significantly less amplitude than alil its neigh-
bors so that its gain was raised in post-test processing to yield
the same level of rms fluctuatioas.

Signal Processing and Probe Placement Considerations

Experiments were conducted to look for small-amplitude
traveling waves whose spatial and temporal structure was im-
portant. Probe placement and signal processing were therefore
carefully considered. Also, because the measurements in both
time and space were discrete, aliasing was of concern in both
dimensions.

Probe number was determined by the number of spatal
harmonics (V) 10 be examined. 2V + | measurement points are
required about the circumference at cach axial station. Eight
were used in most cases, providing definition of the first three
spatial harmonics. We expected most of the energy in the [owest
order modes but were concerned about aliasing of the higher
order modes and blade passing phenomena. Since small up-
stream disturbances due to the compressor are irrotational,
they decay exponentially with upstream distance. Thus, the
first measurements were made one-half compressor radius up-
stream so that high-order (short length scale) disturbances
would be filtered out fluid dynamically. These disturbances
appeared not to be a‘problem and measurements were sub-
sequently made throughout the compressors.

We expect the waves to travel about the circumference at
close to the rotating stall frequency, 20-50 percent of rotor
shaft speed. Thus, the data was digitally band-pass filtered in
the computer, with a passband 0.1 to 1.2 times rotor shaft
frequency. These frequencies were determined by trial and
error comparison to the unfiltered data.

The filtered time histories of the individual sensors can be
used to calculate the modal information by taking a discrete
Fourier transform in space about the circumference of the
compressor at each point in time. Given N measurements about
the machine, the complex Fourier coefficients for each mode
k are given by ‘

B

L@

. : 2iknx

_ Ci= .2-:0 V.exp[ N ]
where V, is the measurcd gxial velocity at angular position n.’
For most measurements described herein, eight sensors were
used so that N = 8, ~3 < k < 4, and, since V, is real, C;
and C.., are complex conjugates. The Fourier coefficients con-
tain all the information on the wave position and amplitude
as a function of time.

Low-Speed Compressor Experiments
The low-speed single-stage and three-stage compressors were
used to explore the nature of the stall initiation process and

the prestail traveling wave behavior, examine alternate sensor
placements, establish the traveling wave statistical behavior,

Transsctions of the ASME
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Flg; 4 Time history of axial velocity from a single hot wirs positioned
upsirsam cf the single-stage compressor; the machine is in rotating stall
after 3 time of 35 rotor revolutions

and determine the influence of inlet distortion and throttie
(mass flow) transients.

Quasi-Steady Stalling Bebavior. During these experiments,
the compressor operation was first stabilized very close to stall
(within 0.003 in flow coefficienc from the stall point in Fig.
3) and then the throttle closed very slowly so that machine
would stall within 10 to 20 seconds. Data were taken during
this entire period from the eight hot wires about the compressor
annulus. Unless otherwise specified, the hot wires were posi-
tioned 0.5 compressor radii upstream of the IGV’s.

Figure 4 shows the time history of the axial velocity as
measured by a single sensor during the stalling transient. Here,
time equal to zero has been defined, somewhat arbitrarily, as
the time at which the velocity nonuniformity has grown to 50
percent of the fully stalled maximum value. The period of a
rotor revolution is used as the unit of time since this is a
characteristic time scale for the phenomena. As can be seen,
the prestall fluctuations have a small amplitude compared to
the rotating stall itself, during which the velocity fluctuations
are greater than 100 percent of the prestall mean velocity. The
time history of all eight sensors about the circumference is
shown in Fig. 5 on 2 magnified scale, and regular disturbances
can be observed here for a considerable time before the stall.
The amplitude of the first Fourier component (ine modulus
of C,), calculated from these data with equation (2), is shown
in Fig. 6. This is a measure of the strength of the first mode
of the rotating wave. Although small compared to the ampli-
tude during fully developed rotating stall (¢ > 0), it is nonzero
for a long period (90 revs) before the stall. The argument of
C, is the phase angle of the traveling wave, and this is shown
in Fig. 7 along with the phase of the second harmonic (arg
Cy). The slopes of these lines are the speeds at which the
harmonics of the waves travel around the compressor annulus
(the annulus has been unwrapped in the figure so that 2x
radians is one trip around). This coarse scale is used deliberately
to show the overall trend. The key point from Fig. 7 is that
phase speed of the first harmonic of the traveling waves is
essentially constant and readily discernibie for almaost 90 rotor
revolutions before the stall. There is a small shift in wave speed

Journal of Turbomachinery
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at the stail point, from 0.35 rotor speed before the stall to 0.38
rotor speed with fully developed stall. The curve marked “‘sec-
ond L-rmonic”’ shows that, for this experiment, the second
narmonic signal is too weak (i.e., the signal-to-noise ratio is
too small with the instrumentation used) to give useful infor-
mation. - , L

A three-dimensional representation of the C, component
during the last 20 revs before stall is shown in Fig. 8 in a format
similar to that of the calculation shown in Fig. 2. The wave
nature of the disturbance in this machine is evident.

The amplitude of the oscillations in the compressor flowfield
(in this case the traveling waves about the circumference) re-
fiects not oniy the operating point but also the level of dis-
turbances in the system (the forcing). Near the neutral stability
point (de~ning, o, close to zero), the flowfield should behave
like a nariuw band system. Re-examining Fig. 7 we see that
there is a stretch of constant phase speed between — 140 and
~ 1285 revs, followed by a period of ill-defined speed to - 95
revs, and then finally constant phase speed until stall at 0. In
the context of the model, we interpret this to imply that the
damping of the compressar (o) is very close to zero, so that
the traveling waves are very lightly damped. They can grow
and then decay, depending upon the level of external disturb-
ances. Thus, we might expect to see some test-to-test vaniation
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Fig. 7 The time history of .lho phase of the lirst and second Fourier

cosliicianis measured upstream of the low-speed, three-stage com.
pressor :

First Faurter
Coelticiant

Fig.8 Messured first harmonic behavior In a format comparable to that
of F'c. 2 T R e . - K .

in the time during which the prestall waves propagate strongly
enough to be evident. This was examined by carrying out ninc
tests on the three-stage compressor under nominally identical
conditions. The mean prestall period of constant wave prop-
agation was approximately 60 rotor revolutions with a high of
250 and a Jow of 30. (In all cases, the wave speed was 35
percent of rotor speed before stall and 38 percent during stail.)
There is thus considerable statistical variation in the time dur-
ing which the prestall waves were tracked. We have not char-
- acterized the source of these variations; they may be related
to low-amplitude external disturbances (noise) convected into
the compressor inlet. Overall, these data establish that rotating
stall starts as a small amplitude travelling wave in the two Jow-
speed compressors studied. _. - - - - .- ..

_Throttle Transient and Inlet Distortion Effects. The influ-
ence of throttle (mass flow) transients and inlet distortion
(spatially nonuniform inlet total pressure) is of interest since
we know from engine experience that rotating stall is often
associated with these phenomena. Experiments were conducted
on botk the one- and three-stage compressors with qualitativ - y
similar findings. .

The throttle transient experiments were conducted at three
different throttie rates, which varied by a factor of 150 to |,
the fastest corresponding to a flow coefficient range of roughly
0.1 (Fig. 3) per 100 rotor revolutions. Distortion was generated
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by blocking off 180 deg of the annulus approximately oae
compressor diameter upstream of the IGVs, creating a roughly
square wave total pressure distortion with an amplitude of 0.5
dynamic head, based on mean velocity. The time-resolved mass
flow for these experiments was obtained using the average of
the hot-wire measurements. The time derivative of the mass
flow was obtained by a least-squares fit to the last second of
data preceding stall. The absolute uncertainty of these meas-
urements was estimated at § percent. - - e e

The prestall behavior of the three-stage compressor with a
uniform (Fig. 9) and distorted (Fig. 10) inlet flow was measured
at three throttle rates. In both cases, the rotating stall was
always p::ceded by low-amplitude waves traveling at coastant
speed. The prestall duration of these waves is roughly inversely
proportional to the throttle rate. This is consisteat with the
stability model in that the higher the throttle rate, the less time
the machine spends at the low flow (@) region of the speedline,
which has low damping (o) and, thus, the shorter the period
during which the prestall waves can propagate for an appre-
ciable time.

The flow coefficient (¢) at which prestall waves are first
discerned is shown in Fig. 11 for the single-stage compressor
as a function of nondimensional throttie rate (d¢/d!), where
¢ is measured in rotor revolutions, i.e., ¢ = time/rotor revo-
lution period. The waves appear at nearly the same value of
¢ independent of the throttle rate {over the rates examined,
the waves appear slightly later as d¢/df increases). The prestall
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period of constant traveling wave speed (the utraight line seg-
ments in Figs. 9 and {0) is plotted in Fig. 12 a3 & funcuon of
the throttle rate and exhibits (roughly) a 1 /(d#/dr) dependence.

The effects of inlet distortion are evident in Figs. 9-11. The
prestall period at near-zero throttle rate is ap orger of mag-
nitude smaller with the inlet distortion than without. This
behavior is also consistent with a model such as that deseribed
by equation (1) if we consider that wave propagation veiocity
and amplitude are functions of the local flow conditions and
thus will vary about the annulus in the case of distorted inflow.
We infer that the signal processing technique used here (equsa-
tion (2)}, which looks only for sinusoidal waves, is not optimal
with inlet distortion. Instead, & method based on the true
cigenmodes of the system-——and thus independent of wave
shape—~shouid be used. These could be calculated using the
procedure outlined by Hynes and Greitzer (1987), but we bave
not yet takea this step.

Seasor Placement Influence. Data were taken with the cir-
cumferential array of sensors at five different axial siations
upstream, downstream, and between the blade rows of the
single-stage compressor to evaluate the influence of sensor
placement on traveling wave detection. The waves were dis-
cerpible at all axial stations. The amplitude increased as the
3¢~<0rs were moved downstream but so did the noise. This is
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reflected in Fig. {1, which shows the signal-to-noue rauo.,
defined as the mean of the amphtude of the first harmonsc
(IC, 1) of the wave divided by the standard deviation. The
signal is cleanes: upsiream of the JGVs.

Disturbance Growth Rate. The general nonlinear mode! that
gives rise to equation (1) describes the evoluton of the traveing
wave gysiem in the ¢ mpressor and it should be capabie of
quanutatively predicting the growth of the waves. The inputs
required for the calculation are the compressor geometry
(lengths, blade stagger angles, etc.) and the steady-state com-
pressor characteristic. Comparison of mode! predicuon with
experimental measurement {or the three-stage low.speed com-
pressor (Fig. 14) shows good sgreement. (Note that, since the
initial conditions for the model are not known, the zero time
reference for the data and the calculation are arbitrary) In
our view, this agreement heips establish the validity of the
model,

High-Speed Compressor Experiments

The wall static pressure history measured just upstream of
the first stage stator in 2 three-stage high-tpeed compressor
withuniform inlet flow during a slow throttle transient is shown
in Fig. 15. The data are for eight crcumferential locations.
The phase speed of the first two spatial harmonics of these
data as calculated using equation (2) shows that the second
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Fig. 18 The phase history of the first two spatial harmonics calculsted
from the high-speed compressor data of Fig. 1§ :

barmonic is most readily discerned (Fig. 16). The prestail am-
plitude [ICyl] is considerably higher for the second harmonic
s weil. The wave speed is coastant for more than 100 rotor
revolutions, showing a behavior similar to that of the low-
speed compressors. Comparison of the phase speed of the
second harmonic as measured at the leading edge of each of
the three stator rows (Fig. 17) shows the signal to be the clearest
atthe first stage. Other measurements and calculations indicate
that the first stage stails first under these flow conditions.

Time history of the wall static pressure on the high-speed
compressor with a 180 deg inlet distortion during a slow throttle
transient is shown in Fig. 18. Here we see thac the prestall
disturbance level is not uniform about the circumference. The
phase speeds of the first two spatial harmonics of this data
are not readily discerned (Fig. 19) except for a short stretch
of the second harmonic. The reason for this may be inferred
from the time histories in Fig. 18, which show prestall dis-
turbances of relatively high amplitude originating on sensor 7
(low flow region) being strongly actenuated as they move by
sensors 6 and 5 (high flow region). Cross correlations of ad-
joining sensors were taken, which indicated a maximum at a
time delay correspooding to i3 percent of rotor speed. A time
history of the maximum value of the cross correlation between
seasors 0 and | shows (Fig. 20) strong correlation for the period
(~ 100 to — {40 revs) during which constant phase speed of
the second harmouic can be discerned. The correlation in-
creases again as stall is approached.
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These high-speed data support the view that the distorted
compressar acts (crudely) as parallel compressors with wave
speed and damping varying about the circumference as a result
of the locally varying flow field. The cross correlations of both
high and low-speed compressor data show that there is focal
real-time information available on the instantaneous com-
pressor stability, which may require more sophisticated data
processing than represented by equation (2). Sl

Application of Signal Processing to Compressor Sta-
bility Estimation o B

We believe that the experimental data presented have verified
the applicability of the compressor stability model represented
by equation (1), at least to the three machines studied. In this
view, compressor stability is directly linked to the growth or
decay of the traveling waves and rotating stall is simply the
mature form of this wave evolution. The question .of.stall
warning thus becomes one of identification of the waves and
estimation of their growth rate. The practical implementation
of this approach is complicated by two factors. The.first is
that, during transients, the growth of the disturbance may not
be slow compared to its fundamental period, and this reduces
the effectiveness of the more simple time spectra techniques
such as fast Fourier transforms (FFT). The second is that the
circumferentiaily uniform flowfield of a compressor with inlet

SN
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distortion means that wave growth and propagation rates are
nonuniform about the circumference, reducing the effective-
ness of the simple spatial analysis approach of equation (2).
To extract the maximum information available from the
compression system, more sophisticated signal processing is
thus required to cope with temporal and spatial variations. In
the following sections, we address only the problem of tem-
poral variability, leaving the spatial variation problem to a
later time.

As sketched in the Appendix, the wave behavior of equation
(1) is associated with the temporal behavior of the Fourier
modes (a;) of the velocity potential of the form

dﬂ‘.

@ () =Cear($) . 3
which is the description of a first-order system in which C is
a constant that depends on geometry, Two interrelated ap-
proaches can be brought to bear on this system: spectral anal-
ysis and system identification techniques.

Spectral Analysis. In its simplest form, spectral analysis can
be used to estimate the power spectral density (PSD) of each
important spatial harmonic of the flowfield. A peak should
be present at the frequency of the traveling waves (20-40 per-
cent of rotor rotation) with its height being proportional to
the power in the wave. Monitoring the time evolution of this
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peak yvields information on the wave growth and thus the
compressor stability. This should be a more discerning tech-
aique than the simple-phase speed plots (as in Figs. 7, 9, 10,
and 15), since the phase is driven by the strongest frequency
component present in the signal, which is not necessarily that
of the traveling waves of interest, while the PSD will not be
so affected. - - - :

The fast Fourier transform (FFT) is often used to calculate
PSDs but has two limitations that are important in this ap-
plication. The first is that the frequency resolution is propor-
tional to the time interval available for analysis. The second
is that the absence of information outside this interval distorts
the spectral response. These problems can be parsticularly trou-
blesome with very short data records and data with time varying
spectral content, botly of which are present in this application.
Other techniques have been developed, however, which largely
overcome these problems. The one adopted here is based on
the fitting of a linear model to the data (Kay and Marple,
1981), which has the advantage of resolving sharp spectral
features from short data records.

The power spectral densities of the first spatial harmonic of
the axial velocity before stall in the single-stage and the three-
stage low-speed compressors are shown in Fig. 21. The trav-
eling wave is readily apparent in both compressors, at 0.24 of
rotor frequency for the single-stage and 0.3S for the three-
stage. (The three-stage data were low pass filtered to remove
the d-c component; the single-stage data were not.) Figure 21
shows the power spectra at one flow coefficient at one instant
of time. The power in the traveling wave (i.e., the height of
the peak at the traveling wave frequency of Fig. 21) is plotted
in Fig. 22 as » function of flow coefficient. The amplitude of
this peak st the traveling wave frequency incresses as the flow
coefficient is decreased, implying that the power in the waves
is related to the compressor stability. Note that the power in
this first spatial harmonic is considerably reduced when inlet
distorzion is present. This is most likely a result of the signal
processing technique used here, which was aimed at discerning
sinusoidal waveforms traveling about the compressor circum-
ference. The distorted inflow waveforms are not so simple,
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thus more sophisticated processing techniques may be required.
The direct spectral approach lets us identify flow features but
does not directly yield information on compressor stability,
since the height of the peak is a function both of the damping
of the system and the amplitude of the excitation. System
identification techniques are of use in this respect.

System ldentification. We have a2 model (equation (1)) that
we believe to be a relevant description of the physical system,
compressor stability. System identification is a rechnique that
allows us to estimate the values of the physical parameters
describing the compressor stability by fitting data to the model
in real time. A discrete time series y, can be modeled as the
solution of a difference equation

S R 5 2 N O

where v, is a noise term (turbulence, electrical noise, convected
disturbances, etc.). The p coefficients of b, in equation (4) can
be estimated by fitting a pth order linear model to the data.
The advantage in this application is that only the parameters
need be estimated since the form of the model has been es-
tablished. Filtering can be used to enhance the results by re-
moving unmodeled dynamics and correlated noise. .

The model can be fitted to the data in either the time or
frequency domain. The time domain was used here since it is
well suited to real-time implementation. Least-squares tech-
niques can be used recursively by updating the model parameter
estimates for each new data point (Goodwin and Sin, 1984;
Friedlander, 1984) and *‘forgetting’’ old data to track time
verying parameters. We refer the reader to Garnier (1989) for
further details.

We rewrite the wave model of equation (3) for each spatial

t.armonic xn the form of equauon (4) asan ordxnuy dnfferenual
equation :.: . e .- - : joe

- {?d:(f)"’* i“*)c-r(f)+V(£) )

wh«e C.s is the harmonic deﬁned by equation (2). gy the
traveling wave damping, «, the wave frequency, and V(e) the
dnvm; noise. In fitting this model to the data at any instant
in time, we have estimated the wave damping and frequency
for each spatial harmonic. To the degree to which the model
is valid, wave damping and compressor stability are equivalent.
A real-time estimate of o is thus an instantaneous measure of
the compressor stability.

The fit of equation (5) to the power spectral density of the
first spatial harmonic of the single-stage iow-speed compressor
is shown in Fig. 23 for undistorted flow and Fig. 24 for dis-
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torted inflow. In both cases, the model fits the general shape
of the data well. The distorted data shows a peak frequency
of ~0.3, which is o close to traveling wave frequency to
simply filter, so a second-order model was employed to account
for this peak. All of the distoned inlet dm subsequently used
a secoad-order model. :

The damping coefficient (o) of the first spam.l hmnomc
estimated with this technique from the data is"shown as &
fimction of flow coefficient in Fig. 25, with and without inlet
distortion. With undistorted inflow, the compressor is stable
until the damping approaches rero. With iniet distortion, the
damping is greater than for the undistorted case sway from
stafl, but drops much faster with flow coefficent “until ‘the
machine stalls at a somewhat higher value of o, The frequency
of the first spatisl harmonic (w;) is the same with and without
inlet distortion and independent of flow coefficient.” The in-
fluence of throttle transients is apparently to steepen the drop
in damping with flow coefficient as well as delay the stall to
a somewhat lower flow coefficient (Fig. 26). How much of the
delay is due to unmodeled inertia effects within the compressor
and how much is due to nme lags in the algorithm has not

been determined.
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Discnssion—-Engineeriug Uses of Prestall Waves  _.

As we have demonstrated, the compressor damping can be
directly estimated on-line, given sufficient experimentai data.
The damping is a direct measure of the compressor stability
over the period represented by the data and is thus an indication
of the likelihood of stall, Whether a machine stails at a given
time is determined not just by the system damping, however,
but also by the nature and level of the system forcing, which
we have not addressed here, The damping by itself, though,
is an indication of the susceptibility to the excitation and thus
tostall. -

One use of this information would be to establish the surge
line of a pew compressor on the test stand without the necessity
of actually stalling the machine. This avoids the requirement
10 ‘‘dump’’ the compressor automatically to a higher mass
flow each time surge is encountered (necessary to prevent me-
chanical damage), and can provide a savings in test time. A
second possible use is to determine the location within a mul-
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tistage compressor of the dlade row in which the stall starts.
The data from the high-speed compressor indicated that the
waves are most clearly discerned at this axial station.

One of the most intriguing and challenging uses would be
as a real-time prestail indicator in an operational engine. The
limited data presented herein suggest that sufficient warnung
time may be available (tens to hundreds of rotor revolutions)
for a more ot less conventional engine control system to take
corrective action (changing fuel flow, nozzle area, vane set-
ungs, et¢.), thus reducing the surge margin required and the
associated penaities. There are many questions that must be
examined before the practicality of such a scheme could be
established——not just ones of compressor dynamics as ad-
dressed here but also more applied ones such as sensor relia.
bility, computational requirernents, system complexity, overall
dependability, and cost.

An even more chalienging use of these prestall waves is as
a control signal for an actively stabilized compressor, one in
which external feedback control is used to increase the com-
pressor stability by increasing the wave damping (¢). Epstein
et al. (1989) first suggested this approach and an ongoing effort
was described by Dugundji et al. (1989), where the inlet guide
vanes of a single-stage low-speed compressor were being ** wig-
gled" to suppress the traveling waves and thus increase the
compressor stability.

For any of these applications to become practical, consid-
erably more work than presented here must be done on the
sensing and identification of these circumferentially traveling
waves. In particular, the sinusoidal nature of the signal pro-
cessing inherent in equation (2) must be relaxed in order to
account for more complex flows, such as those with inlet dis-
tortion. Algorithm selection and adaptation to minimize the
length of time data must be taken to identify the waves is
another area where work is needed. We believe these extensions
of the present work are straightforward, aithough not neces-
sarily simple. Somewhat more complicated (or at least tedious)
is the analytical inclusion of compressibility to model high-
speed machines accurately (although the high-speed data ex-
amined to date are quite similar to that from low-speed ma-
chines).

An extremely fundamental question is how general are the
results presented herein; do some, most, or all compressors
exhibit this prestall wave behavior? We make no claims beyond
the results for the compressors we have examined. All exhibit
similar behavior, behavior in accord with the theoretical models
of compression system stability.

We know of no reason why such waves should not exist in
all compressors, although we would not be at all surprised if
their strength and duration varied to such a degree as to render
them very difficult to discern in some machines. Only more
data can answer this question.

Conclusions and Snmhary

We have examined the flow in two low-speed and one high-
speed compressor. The experiments in these machines show
that:

1 Small-amplitude (less than 5 percent of the stall ampli-
tude) waves can be discerned traveling about the compressor
annulus at close to the rotating stall speed for 10-200 rotor
revolutions prior to the onset of rotating stall.

.2 These waves grow into a fully developed rotating stall
without apparent sharp changes in either phase or amplitude.

3 The prestall period during which these waves were dis-
cerned varied by a factor of § at a single flow condition,
apparently stochastically.

4 The behavior was similar in both the high and low-speed
compressors, except that the first spatial harmonic was the
strongest in the low-speed machines and the second in the high-

speed.
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5 Inmuitistage compressors, the prestali waves are clearest
in the stage thar swalls first.

6 Inlet distortion reduces the period during which the pre-
stall waves were discerned, using techniques based on the as-
sumption of sinusoidal waves about the circumference.

7 The data fit the model of Moore and Greitzer, including
both the qualitative behavior of the prestall waves and the
quantitative prediction of the growth rates.

Overall, we believe that recognition of this wave behavior
can be a useful tool in the study of compressor stability. Future
work should encompass more sophisticated signal processing
to account for distorted inflow, include the effects of com-
pressibility, and extend the experimental work to a larger num-
ber of compressors.
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APPENDIX
Brief Description of the Basic Stall Inception Model

The underlying ideas of stall inception and the approach 1o
the sensing are connected by a simple model, which provides
a framework 10 view the phenomenon. Two points concerning
rotating stall onset should be siressed at the outser. First, when
one considers the actual flow, there are several disparate length
scales involved. What is needed is a description of the intet-
action between flow on the blade element scale (Jengh scales
on the order of blade pitch or smaller) and the wave strycture
in the annulus (flow phenomena with length scale of the radius
of the machine). Second, there is strong evidence thar the
*‘region’’ of the blade passage that is responsible for rotating
stall is the endwalil. Put another way, the mechanism of stall
is generally nor two dimensional, and the treatments that view
it as such miss the essential fluid mechanics of the situation.

The model that we use was developed by Moore {1983) for
rotating stall and later extended by Moore and Greitzer (1986)
to encompass generalized disturbances, i.¢., combined rotating
stall and surge in muitistage machines. Here we examine only
onset of the former. In the model, the disturbances upstream
and downstream of the compressor are viewed as two dimen-
sional; this would be expected to be the case in compressors
of high hub-tip radius ratio. The biade row description, how-
ever, makes use of the measured steady-state compressor pres-
sure rise characteristic, with correction to accouant for
unsteadiness. In a very real sense, then, three-dimensional ef-
fects are accounted for because the behavior at the endwalls,
which can be a strong contributor to the “turnover’’ in the
pressure rise versus Tlow curve, has been included. Although
both the blade row modeling and the coupling between large
scale disturbance field and blade element dynamics are crude,
the model does appear 10 contain the necessary elements for
a description of the stall process. It is this point, with the
simplicity as a secondary issue, that suggests use of such a
description in the sensing and control problem.

The derivations of the relevant equations have been given
several times eisewhere, 30 that we will only sketch out the
steps leading to the equations that we need. The flow fields
cousidered are two dimensional, inviscid, and incompressible
upstream and downstream of the compressor. The flow in these
two regions is coupled by three matching conditions across the
compressor, two kinematic and one dynamic. With these con-
ditions, representing the modeling of the unsteady and son-
axisymmetric compressor performance, we describe the flow
in each region as follows. -

Upstream Flow Region. Upstream of the compressor the
flow is irrotational, and a velocity potential can be used. We
express the velocity as a uniform steady flow plus a small
ssymmetric perturbation, which is the gradient of a potential,
&, satisfying the two-dimensional Laplace equation, with pe-.
riodic boundary conditions and vanishing far upstream. & can
thus be expressed in terms of its rpatial Fourier coefficients as

80,0, D= L ar(f)ete (AD

743 1]

‘The quantity » is the nondimensiopal axial coordinate x/R and
£ is a nondimensional time, where ¢ = time » (U/R).
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Across the Compressor. As siated, there are three matching
conditions that are applied across the compressor. The first is
that the local axial velocity distribution is the same at all axial
stations cthrough the compressor. This approximation is made
on the basis of the small opportunity for circumferential re-
distribution within typical compressors. Order of magunitude
arguments imply that it is most correct {or disturbances with
low order harmonic content, and these are precisely the ones
of interest here. Discussion of the assumption can be found
in the papers by Dunham (1965) or Stenning (1980).

Explicitly, the matching condition is

“u(ot 8, E)'“J(O- b, £)
where the subscript u refers 1o just upsueam and d 10 just
downstream of the compressor.

The second matching condition is consun: lcavmg angle at
compressor exit. This is also an approximation, bat it should

-be reasonable for the solidities of practical concern.

The last matching condition can be expressed in terms of a
relation between the pressure difference across the compressor
and the local axial velocity and its derivative. As developed
by Moore (1983) (see also Moore and Greitzer, 1986) the match-
ing condition can be written in a linearized form as

3P, 3P,
8Py (dw)“ NBeo_ 3 A2)
p de 9 " 3 fioap
The quantity (dy/deé) is the slope of the steady-state com-
pressor characteristic, and A and u are nondimensional pa-
rameters associated with the inertia of the fluid in the
compressor blade passages. Their precise values are not critical
here since what is of most interest is the general form of the
solution, but for reference u is roughly twice A and is of order
unity. . :
Downstream Flow Region. The linearized flow field in the
downstream region is periodic and obeys the equation

v zéPd =0 (A3)

with the boundary condition far downstream of constant static
pressure. The downstream pressure field is thus of the form

8Py=LP, (§)e~ """ ™ (Ad)

Using the lincarized forms of the equations of motion in the
upstream and downstream region equations, (Al), (A2), and
{A4) may be combined into a single equation for ax (), the
Fourier component of the upstream velocity dxsturbance po-
tential. This is -

ikl (—djﬁ) - IkA ’
day(§) ad
dt . (2+ ikig) ad®) (AS)
If we define - .
’ ’ - o 1kl
== dt‘) 2+ lkla (A8)
1kl
= ikin 2+ Lkl (A7)
_The solution of equation (A5) can be written
ay(8) = bel o)t (A8)
and thus o . )
$= E b,e““"'*"e’“‘""*" ) (A9)
lklmQ

As stated in the main 1ext, therefore, the Fourier mode is the
product of two exponentials, The term &*~“*) represents a
traveling wave, with w, the wave frequency. The other expo-
nential, ¢'*'"~*H, gives the dependence of the wave amplitude
on axial position (n) and time; o, is the damping of the wave,

Journsl of Turbomachinery

DISCUSSION

Y. N. Chen,' U. Haupt,’ and M. Rauteaberg’

The paper presents a series of interesung experumental results
about the presiall wave. Figure 4 shows that thys wave 15 am-
plified within about one cycie into the rotaung stall wave of
nearly the same frequency. The explanauon of this extremely
strong amplification is based on the two-dimensional theory
of the velotty potepual given in equaton (1), as introduced
by Moore and Greitzer (1986). This equation represents a trav.
eling wave around the circumference of the rotor with de-
pendence on the axial position. EQuauon (1) is viewed in the
paper as analogous to the behavior of an oscillator rotatng
about the circumference of the compressor. The growth of the
wave (i.e., the instability of the compressor) is determited by
the instantaneous damping. When the damping is negative,
oscillations grow and the flow in the compressor is unstable.

The prestall wave in the form of & stall precursor is thus
considered in the paper as an axially transverse wave traveling
around the circumference of the rotor. As the corresponding
annular space is occupiest by a lot of blades, it may be difficult
to realize how such a traveling wave can cross the barrier in
the form of these blades.

If the alignment of the stall cells of multistage axial com-
pressors in the axial direction is considered, the waves asso-
ciated with rotating stall of each of the stages are blocked in
the axial direction. [n other words, the waves penetrate through
the whoie depth of the compressor from the rotor of the first
stage to the rotor of the last stage in the axial direction withgut
changing in the global pattern. This depth-independent nature
reveals that the waves of the different stages have the capability
of blocking each other in the axial direction on one hand, and
crossing the blade channels of the rotor on the other.

The writers of this discussion found in their previous pub-
lications (Chen, 1990; Chen et al., 1987, 1989, [990a, 19900,
1991; Haupt et al., 1987) that the baroclinic waves in com-
bination with the Rossby waves and the associated transient
vortices (a circular Karman vortex street) posses the capability
required.

It was shown by the writers that on the verge of rotating
stall the compressed reverse flow comes from the annular space
behind the outlet of the rotor along the casing/shroud to meet
the fresh forward flow on a ring-shaped front. Due to the
different entropies and temperatures of the two opposite flows,
a baroclinic instability deforms the ring into a wavy motion.
This front was, in addition, confirmed by the measurements
of Koch (1970) and Inoue et al. (1990) as cited in Chen et al.
(1989, Fig. 14, and 1990a, Fig. 17). The wavy motion of the
front is then developed into Rossby waves, the velocity field
of which was detected from the measurement of Breugeimans
and Sen (1982) on a centrifugal turbomachine (Chen, 1990,
Fig. 10), and from the measurement of Lavrich (1988) on an
axial compressor (Chen et ai., 1990b, Fig. 20, and 1990a, Fig.
4).

There are two kinds of secondary recirculations in the rotor,
which control the activity of the Rossby waves and the rotating
stall,

The first kind of secondary recirculation, composed of the
reverse flow along the casing/shroud and the forward flow
along the hub, primarily promotes the Rossby waves and thus
the rotating stall. There is a close analogy between the Rossby
waves in the annular spaces in front of and behind the rotor
of an axial compressor on one band, and the Rossby waves
(baroclinic waves) on the upper and bottom layers of a rotating

'Sulzer Brothers Lid., Winterthur, Switzeriand.
*astitute for Turbomachinery, University of Hannover, Federal Republic of

Germany.
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fluid annulus with an anificial recirculation between the outer
and inner cylindrical walls found by Douglas et al. (1972} in
their laboratory experiment {see Chen et al., 1987, Fig. 9) on
the other hand. The pressure rise of the rotor corresponds 1o
the gravity field in the experiment of the rotatng annuius. The
Rossby waves in the two annular spaces/layers are coupled
with each other by their blocking effect.

In the case of the rotor, the communication of the activity
of the Rossby waves between the blade channels is carried out
by the second kind of secondary recirculation around each of
the blades, as shown by Chen et al. (1990a, Figs. 14, 15, and
16).

Furthermore, each blade channel of the rotor of an axial
compressor generates its own Rossby wave (see Chen et al.,
1990b, Fig. 22), which serves as a communicating member
between the Rossby waves in the two annular spaces in front
of and behind the rotor. In this manner, the field of the Rossby
waves around the entire rotor forms an ensembie, renewing
from blade channel to blade channel under the guidance of
the activity of the Rossby waves in the frontal and rear annular
spaces.

The formation of the Rossby wave in each of the blade
channels of centrifugal compressors can be also verified, as
shown in a further paper of the writers (1991).

The Rossby waves in the turbocompressors and pumps are
similar to those in the ocean and the middle aumosphere (¢.3.,
500 mbar height). In the latter case they guide the polar front
on the earth’s surface (i.e., between the warm westerly from
the subtropical region and the cold easterly from the polar
region, and thus subjected to the baroclinic instability for
forming the meteorological vortices ‘‘low and high’ of the
unstable weather event), and the jet stream in the high at-
mospheric level (200 mbar).

The Rossby waves of the rotor have their velocity compo-
nents prirarily in the tangential and radial directions v and
v. These two components correspond to the west-east direction
of the zonal flow and its deflection to the north-south direction
in the Rossby waves of the atmosphere. The axial velocity
component w, which initiates the first and second kinds of
secondary recirculations of the rotor mentioned above, is not
directly invoived in the Rossby waves. These tangential and
radial components u and v of the Rossby waves are then capable
of being communicated between the blade channels as stated
previously.

The paper under discussion is based on the wave motion of
the axial velocity component w around the rotor. This cor-
responds to a wave motion in the atmosphere in the direction
normal to the earth’s surface. Such a wave is observed as an
internal wave in stratified flow on the earth, e.g., the lee wave
downstream of a mountain as a barmier. This wave cannot
cause a rotating disturbance around the earth. In other words,
the axial disturbance in a rotor cannot stay in any direct con-
nection with the rotating stall, which has the major property
of a rotating disturbance.

The rotating stall of the axial compressor usually has one
stall cell. The Rossby number of the accompanying Rossby
wave was determined to be 0.083 by the writers (1990b). The
rotating stall of the centrifugal compressor with its two-cell
pattern has then a Rossby number of 0.17 (Chen, 1990). These
values correspond well to those of the Rossby waves in nature.

The writers are quite aware that their Rossby-wave theory
is still in a developing stage. It needs further mathematical and
physical treatments. An advanced step for this will be carried
out in the near future (Chen et al., 1991).
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Authors’ Closure

The authors thank Drs. Chen and Haupt and Profesor Rau-
tenberg for their comments. We do not, however, agree with
the points that are made. In particular, we do not see that any
scientific evidence at all has been presented connecu.ug rotating
stall with either Rossby waves {(which occur at high rados of
Coriolis to inertial forces) or baroclinic instability. To be more
explicit, we have not sees, either in their discussion or in
previous expositions, any clearly stated body of assumpiuions,
a mathematical statement of the problem, calculations based
on this statement, or predictions about the form of such waves
in an axial compressor. We feel strongly that such a rational
development is needed to demonstrate the appropriateness. let
alone the correctness, of any proposed theory. Figure 14 of
Garnier et al. is the result of such a process: a computaton
based on a clearly stated theory. [ts agreement with experiment
seems (0 us to show that the theory contains much of the
essential physics of the stail cell wave evolution, but if this is
disputed then there are specific statements that one examines
to see the cause of any disagreement.

In addition to this overall view, there are clear errors of
concept in the discussion, For example, baroclinic instability
(which depends on density not being solely a function of pres-
sure) in invoked by the discussers to explain some aspects of
rotating stall. The flows examined by Garmuer and predeces-
sors, however, had low Mach numbers (on the order of 0.1 in
some cases) and temperature rises much less than the ambient
level. Under these conditions, the flow can be coasidered con-
stant density, the entropy has no dynamic significance, and
there is no role played by baroclinic instability. Further, in the
theory presented in the paper, the propagation of the stall cell
depends on a balance between inertial effects in the compressor
and the upstream and downstream flow fieids; there is no
relationship to Rossby waves.

In summary, while some of the statements concerning Rossby
waves made by the discussers may be correct, we have seen
no factual trail leading to their connection with rotating stall.
We would be pleased to consider such evidence if presented
in @ well-reasoned and unambiguous manner, rather than as
the vague analogies that appear in the discussion.
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Abstract

A formulation of the Moore-Greitzer rotating stall model is presented which
allows nonlinearity to be represented in a control-theoretic framework. To test the
validity of the nonlinear model, stall inception experiments are compared to
simulated stall inception transients. The shape of the nonlinear compressor
characteristic is shown to be important in characterizing the transient behavior. The
effects of the throttle characteristic and unsteady losses are also discussed.

Introduction

Rotating stall and surge are violent limit cycle -type oscillations in axial
compressors which result when perturbations (in flow velodty, pressure, etc.)
become unstable. Originally treated separately, these two phenomena are now
recognized to be coupled oscillation modes of the compression system -surge is the
zeroth order or planar oscillation mode, while rotating stall is the limit cycle
resulting from higher-order, rotating-wave disturbances. The importance of these
phenomena to the safety and performance of gas turbine engines is widely
recognized (1], and various efforts to either avoxd or control both rotating stall and
snrge have been studied [2,3,4].

“~ A turning point in these attempts came with the development of relatively
simple models for surge and rotating stall [5,6,7], which relied on modeling the
global behavior of the compression system rather than detailed internal flow
characterization. These models, which we will call the Moore-Greitzer models, were
simple enough to be used in the design and implementation of stabilizing
controllers. In fact, it has been shown that in centrifugal compressors [8,9], and in
some low-speed axial compressors [10,11), the linearized versions of the surge and




rotating stall models are accurate and useful representations in the context of
stabilization.

The nonlinear forms of these models have also received attention as tools for
studying stabilization and control (12,13]. In this respect, nonlinear modeling of
surge is more mature: experimental studies indicate that the details of surge
initiation and the surge limit cycle are well characterized by the nonlinear surge
model [14, 21}; all indications to date are that nonlinear control law design based on
this model is justified and would work in implementation.

The nonlinear rotating stall model, on the other hand, is more complicated,
involves more assumptions and simplifications, and is more difficult to verify
experimentally. Lavrich [15] conducted the most thorough study of the assumptions
of the Moore-Greitzer model, and found that during fully developed stall, significant
radial and circumferential flow occurs, which makes the model assumptions less
accurate. Thus care must be exercdised in using the rotating stall model without first
verifying its usefulness in characterizing the instability to be controlled.

Fortunately, characterizing fully-developed rotating stall is not our primary
goal. Since a stabilizing controller would keep perturbations relatively small, it is
only small-perturbation waves and stall inception waves that we must accurately
model. The former have been shown to obey the linearized dynamics satisfactorily,
and to be stabilizable over a certain range of unstable operating conditions. 5tall
inception waves, on the other hand, involve large enough perturbations that
nonlinear effects must be taken into account. These nonlinearities may be important
for controllers of severely nonlinear compressors, or to extend the stabilized
operating range of existing active control research compressors.

In this paper, we first present the coupled nonlinear surge/rotating stall
model, in a form which is useful for control law design. We then look at
experimental rotating stall inception data, and compare it to simulation results. Our
goal is to show that, for the perturbations which lead to rotating stall, the Moore-
Greitzer model adequately characterizes compressor dynamic behavior. In the
process, the important effects of the nonlinearities will be elucidated.

Low Speed (Incompressible) Compressor Maodeling
Consider the schematic diagram of an axial compressor in Figure 1. It

consists of an upstream annular duct, a compressor modeled as an actuator disk, a
downstream annular duct, and a throttle. During stable operation, flow through the

2




compressor can be assumed to be drcumferentially uniform (axisymmetric), and a
single non-dimensional measure of flow through the compressor determines the
system state. This measure is the 'flow coefficient’, which is simply the
nondimensionalized value of the axial velocity:
_ (axial velocity) M
(rotor speed)

- During quasi-steady operation, the total-to-static pressure rise delivered by the
compressor is simply determined by its 'pressure rise characteristic,' denoted Y (¢).
The pressure rise is balanced by a pressure loss across a throttling device, which can
be either a simple flow restriction (used for testing compressors as components) or
the combustor and turbine in a gas turbine engine. The balance between pressure
rise across the compressor and pressure drop across the throttle is depicted as an
intersection between the characteristics of the two devices, Yc(¢) and ¥1(9), where,
for low pressure ratios, Y1(¢) is usually taken to be a quadratic function of ¢:

¥r=3Kr¢? @)
KT depends on the degree of throttle closure. In a typical experiment, the throttle is
slowly closed, the throttle characteristic becomes steeper (modeled by adjustment of
KT above), the intersection point between ¥¢(¢) and ¥t (¢) changes, and the
equilibrium operating point of the compressor moves from high flow to low flow
(see Figure 2).

The stability of the equilibrium point represented by the intersection between
Vc(9) and V1(¢) has been the topic of numerous studies, due to its importance in the
safe, high performance operation of gas turbine engines. In our model, the system
state under unsteady, possibly non-axisymmetric (i.e. circumferentially varying)
conditions is characterized by three terms: the annulus averaged pressure rise
delivered by the compressor, ¥, the annulus averaged flow coefficient, §, and the
spatially distributed perturbation on ¢, denoted 3¢ :

#n,0,9) = ¢ +56(,0,7y 3
where 1 is the nondimensional axial position in the compressor (the origin is chosen
to be at the compressor face), 0 is the circumferential position, and t is non-
dimensional time (in rotor revolutions).

Note that evaluation of V¢ and ¥1 must now be conducted more carefully
due to the unsteady and non-axisymmetric character of the flow: ¥ is evaluated at
1 =0 (the compressor face), and varies with both T and 6 ~i.e. we evaluate
V(¢ + 86(0,0,7) ). Thus the compressor is viewed as a distributed memoryless'
nonlinearity operating on the local flow coefficient. On the other hand, due to the




nature of the downstream flowfield, ¥1 can be evaluated for the annulus averaged
flow; thus the pressure loss across the throttle is simply Y{(®).

One additional variable must be introduced in order to set up the system of
equations. The upstream flowfield, being two dimensional, admits both axial
velodty perturbations (8¢ ) and circumferential velocity perturbations. Rather than
introduce a drcumferential velocity variable, we will introduce the perturbation
velodity potential 3, such that

3(;") =8  and éﬁgg’)—-_—a(cm. vel). @)

We will see that 3 can ultimately be eliminated from the equations, along with all
of the partial derivatives with respect to space, leaving an operator-theoretic
ordinary-differential relationship. '

This discussion serves only to introduce the relevant states of the system.
Derivation of a model for the dynamics of the compression system is presented in
other documents, and is beyond the scope of this paper. Our purpose is to present
the model in a format which is coherent and accessible from a control theoretic point
of view, and to discuss the dynamic implications of the model. Thus we present the
dynamics without further derivation, referring the interested reader to the relevant
literature (5,6,7,10,16].

1) For the upstream flow field we assume no incoming vorticity (clean inlet
conditions) and thus the flow in this region is potential:

VD =0 ns0. )
2) The annulus average (a.a.) pressure rise across the compressor lags behind that
imposed by the throttle characteristic, due to mass storage in the downstream
ducting and plenum chamber

3) The a.a.flow coefﬁcient changes to try to balance the difference between the a.a.

pressure rise delivered by the compressor and the a.a. pressure rise that actually
exists across the compressor (in unsteady situations these can be different):

Foplvcbrsl, -9 =0 g

4) Finally, the non-axisymmetric (n.a.) part of the pressure rise delivered by the
compressor acts to accelerate the flow through the rotor and stator passages, where
part of this acceleration is due to the rotor moving through a non-uniform flow
perturbation (this is represented by the presence of a partial with respect to ): - -

‘l'},l.ac




5) Definitions: 1, B, m, i, A are scalar geometric parameters defined in [16], ¢{-) is

the inverse of ¥, and the definitions of the a.a. and n.a. part take the expected
forms:

1" ,and
["’C]a.a. = Z_TEJ; WCde an
)
Vclha =vc-[¥claa. -

note that only through the nonlinearity of ¥ are the axisymmetric and the non-
axisymmetric dynamics coupled. Furthermore, if the n.a. dynamics (rotating stall)
dynamics are fast compared to the a.a. (surge) dynamics, then it is reasonable when
studying surge to represent the system using only the a.a. part, provided the
compressor characteristic is properly modified to reflect the effect of instability of the n.a.
part. Such modification for high-efficiency, multi-stage, high hub/tip axial
compressors will invariably lead to an a.a. characteristic which is discontinuous and
has a hysteresis loop (as in {7]).

The system of equations (5-8) is a coupled set of partial differential equations,
in which two space dimensions and time are present. For clean inlet flow
conditions, however, the space dimensions can be eliminated by introducing the
solution for the upstream velocity potential as follows:

0= 3 & (1)yeintelnh n<0. (10)

NE e

n#*0
This solution satisfies Laplace's equation, and the other boundary conditions of clean

inlet flow experiments as described in [10]. Using Equation (4), we can also write a
solution for 3¢ in the upstream flowfield:
8= 2 §yr)eintelnh ns0, (1)
n=s-es .

nxd

where §(t) = In/&(1). These relationships allow 34 to be eliminated from the system,
and Equation (8) to be written =~

L n .2.. {(l‘?ﬁ‘sn + by + Mﬁn}e“‘“} =[vc@+3)na 12)

where the need for partials has been eliminated, and §,{<) is the nth spatial Fourier
coefficient of the axdal velocity perturbation at the compressor face (n=0).
Introduction of the Fourier series solutions to eliminate spatial derivatives is a
well-known method for handling distributed systems. The modal (or 'spectral’)
form of the equations allows linear control techniques to be applied. This approach
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has proven successful in laboratory stabilization of rotating stall [10,11]. To study
the effects of nonlinearity on the system, an operator-theoretic form is often more
useful. By substituting the Fourier transform definition of ¢, into (12), we can write
the system (6-8) as follows:

¥ 0 -1 0 |ly ;@;‘H ) 0 0 y

o =] ® L . : 5

¢ |-l ag 0o o0 ||&}+ 0 ic[\yc( oo ol a3
E(8$) 0 0 AC)| 8 0 et .. |3
L r L J g L ) L
where:

- (@ fE oo oo
and

AC) =fanf()
= n;_" ;_n.(z_ln.J;h(.)e-me-c)dg) , (15)
nev

E and A are linear operators which represent spectrally the effect of the upstream
flowfield, as well as allowing derivatives with respect to 6 and 1 to be evaluated.
The linear and nonlinear parts of Equation (13) have been separated for illustrative
purposes, but the equations are clearly in the desired form, i.e. x = F(x).

Equations (13) can be further recast into a number of different forms, .
depending on the application, by repeated application of the Fourier transform and
its inverse. For instance, we have implemented an update equation for E(3¢ ) in our
simulation, and then used the proper Fourier relationships to recover 8 . Itis also
possible, by choosing appropriate state variables, to reduce the system to one
involving convolution with influence functions in the circumferential variable 8, and
thus eliminate the summations over n. Finally, discretization of 8¢ in 8 and
substitution of matrix Fourier transformations in place of summations and integrals

allows the system to be written as a finite-dimensional state-space system, with good
numerical properties for simulation and controi work (10]




The purpose of this section was to introduce the Moore-Greitzer model in a
form which is useful to control theorists. Simplification of the model to state-space
form, as well as approximations such as the surge-only and rotating-stall only
approximations, can be made with (13) as a starting point. Because of the
assumptions on the upstream flowfield, the partial-differential nature of the original
system of equations has been eliminated, and the dependence on axial position has
been 'solved out’ of the system, leaving a simpler set of equations.

Refinement of the above model to include the effects of unsteadiness on the
compressor characteristic has been conducted by Hendricks et. al. (18], for the
linearized system. Their refinement recognizes that the compressor characteristic is
not in reality a memoryless nonlinearity. They show that the lags inherent in the
compressor pressure-rise response have a strong effect on both the damping and the
rotation frequency of pre-stall waves. Al hough thi~ odification is not yet available
in the nonlinear simulation used here, an approximation has been implemented

‘which allows the damping effect of unsteadiness to be taken into account. We will

show in the next section that wth this modification, and with an adjustment of A to
account for the rotation frequency change, a nonlinear simulation of Equation [13]
accurately models stall inception in experimental low-speed axial compressors.

c ison of Simulated and Expex 1 Stall Incenti

The nonlinear functions ¥¢ and ¥t in (13) govern both the stall inception and
the fully developed stall behavior. Fully developed stall behavior has been treated
by other researchers, and for the purpose of stabilization, it is the character and
subsequent avoidance of stall inception that is of primary interest. Thus we will
concentrate here on the effect of ¥¢ and V1 on nonlinear stall inception behavior,
showing both experimental and theoratical results.

Stall inception - that is, transition from axisymmetric flow to fully developed
stall - is of interest because only during this transition process are two important
criteria met by the flow field: 1) relatively smail axial flow perturbations 2) strong
influence of the nonlinearities. Meeting the first criterion is important to insure that
the assumptions inherent in the model described above and in [7] are reasonable.
Specifically, the "semi-actuator disk" assumption used to simplify the representation
of the flow across the compressor is a more severe approximation during fully
developed stail than during pre-stall and stall-inception conditons (15]. Restricting
the model validation to waves of small amplitude relative to fully developed stall



does not pose a problem to control law development, because presumably any
working controller would stabilize the system and avoid the fully-developed stall
condition.

The second criterion mentioned above is important in the present study
because understanding and accurately modeling nonlinear stall inception behavior
is our goal. In some compressors, Over a certain range of flow coefficients,
linearization of the dynamics in (13) is a workable approach [3]. However, to further
extend the operating range of these compressors, and to control compressors in
which nonlinearities are more severe, we must understand the nonlinear behavior.
Although fully developed stall is a nonlinear phenomenon, it violates our first
criterion. Thus we are left with stall inception, where nonlinear effects are beginning
to influence the behavior, but the flow perturbations across the compressor are still
relatively small.

Our approach in the'present study is to carefully model three experimental,
low speed compressors which have different stall inception behaviors. For "
convenience we will label these compressors C1, C2, and C3. The details of the
experimental setup for each compressor are described in references [3], (18], and [19]
respectively. The geometric details of the compressors (those necessary to perform
the simulation) are presented in Tables I and II, and the compressor and throttle
characteristics are shown in Figures 3, 4, and 5. Note the following deviations from
strict physical interpretation of the model parameters:

1) The Greitzer 'B' parameter [5] is set to 0.1 in the experimental compressors - this
represents in all cases a 'worst case’ maximum. Even using this maximum, the
surge dynamics are very stable for the experiments we will present; thus we

have for Equations (6,7)
$ = o) ; (16)
¥ =[wc(®+80)], 5,
i.e. the mean flow will follow the throttle characteristic very closely in these
experiments.
2) The unsteady loss parameter is set to 0.3 in all three compressors. A priori
prediction of this parameter is difficult [18], so we have chosen to use an
approximate value which is the same for all three compressors. The value

chosen is roughly the non-dimensional convection time across one blade row
(which happens to be approximately the same in all three compressors).

3) Two simulations will be presented for each compressor. The first will use the
geometrically determined value of A, and the second will uses an 'effective A,




which has been adjusted to account for the rotation frequency change caused by
unsteady losses. Since only the damping effect of unsteady losses are currently
modeled in the simulation, this approach is deemed appropriate (see [20]). 4 is
the only parameter (in the simple version of the model presented here) which
can be used to change the frequency of rotating stall - modeling other effects
(which do in fact increase the rotating stall frequency) would require additional
dynamics in the simulation.

In order to determine the compressor characteristics in Figures 3-5, the
following procedure was followed: First, the experimental data for each compressor
was fit with polynomial segments. The experimental data extends only to the mark
X' on each figure, because beyond this point the compressor is unstable and does
not operate axisymmetrically. The region between.the 'X' and the 'O’ marks on these
figures is the actively stabilized region of operation. Compressors C1 and C2 have
had their stable operating rahge augmented through active control. This allows us
to more fully characterize the compressor characteristic in a very important region
for this study; when the active control is switched off in these compressors,
nonlinear stall inception proceeds from the operating point 'O’, and the region
between the 'O’ and the 'X is the first region accessed by transient velocity
perturbations.

The next step in determining ¥¢ is to utilize the simulation to qualitatively
iterate on the correct shape for its unstable part. This trial-and-error procedure is
necessary because no directly measured data for ¥c exist in this unstable region.
Our hypothesis is that stall inception provides a measure of the effects of ¥ which is
distinct enough to allow the deduction of the shape of ¥c beyond the measurable
range. Such deduction requires an understanding of the impact of various 'shape
parameters’ for V¢ on stall inception behavior. Implicit in this approach is the
assumption, which we will verify through application, that the character and
qualitative features of the stall inception process are driven primarily by the -

" nonlinearities, and that informed choices for the shape of the unstable side of the
characteristic can be made which allow the qualitative stall inception features to be

simulated.
. Several features of the shape of the unknown part of . are shared by most

compressors, so these provxde a general framework within which to search.
Pressure rise generally reaches a maximum at some flow coeffident, dropping off
below this flow value due to separation and other loss-producing factors at low
flows. During reverse flow (negative 5¢), however, pressure rise becomes roughly




quadratic and increasing, because the compressor looks roughly like a throttle to
reverse flow. The details of the drop in pressure rise below the peak, the depth of
the low-pressure-rise region between zero flow and the peak, and the steepness of
V¢ for negative flow values are the parameters which are adjusted to attempt to
match the experimental stall inception behavior.

For our purposes, the most in:{portant feature of Y¢ is its shape near the peak
-specifically its steepness on the unstable (low flow side) compared to the stable
(high flow) side of the peak. Compressor C1 is steeper on the stable side than the
unstable side over a large range of flow coefficients. Compressor C2 is roughly
symmetrical about its peak, ,and compressor C3 has a steeper slope on the unstable
side. (See Figures (3-5)). This qualitative observation may be made conceptually
precise by specifying the sign of the leading coeffident of a cubic polynomial fit to
the peak of the characteristic:

: V@) = A93+Bo2+Co +D an
With this descriptdon of the peak, C1 would have A<0, C2 would have A=0 and C3 would
have A>0.

Differences in the shape of ¥ near its peak are used to account for the
observed differences in stall inception behavior. The other features mentioned
above are chosen so that the simulation gives roughly the measured magnitude and
depth of the fully developed stall cell; these are less important for stall inception
than the conditions around the peak, at which stall inception occurs.

Figures 3-5 also show the transient of the annulus-averaged operating point
during the transition into rotating stall. Note that the annulus-averaged compressor
no longer operates on the axisymmetric characteristic - although the local flow does.
Since most compressors are tested using only annulus averaged measurements, their
measured characteristics cannot be considered as the axisymmetric (local) characteristic
for use in 2-D simulations. Conver.éely, when one studies the 1-D dynamics of a
compression system, the axisymmetric characteristic should not be used: The 1-D
dynamic system sees the 1-D (annulus averaged) effect of rotating stall, so this effect
should be modeled by using the annulus-averaged compressor characteristic, which,
for the compressors tested here, is a discontinuous, dual-valued function (due to
hysteresis in rotating stall recovery).

The unstable parts of the compressor characteristics presented in Figures 3-5
are the results of our search, in each case, for the shape of ¥¢ beyond the peak that
allows the simulation to best mimic the experimentally observed stall inception
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behavior. The 'best fits' to the transient data obtained in this way are shown in
Figures 6, 7, and 8. In all cases the salient features are similar between the
experiment and simulation, although the three compressors have very different stall
inception behavior. Compressor C1 has a very long, slow growth of perturbation
waves into rotating stall. Compressor C2, on the other hand, has relatively small
perturbation waves, followed by a sharp inception wave which leads quickly into
fully developed rotating stall. Compressor C3 is even more severe in this regard:
nonlinear influences are seen while the waves are still quite small, and the stall wave
grows extremely quickly into violently a nonlinear event.

It is clear from Figures 6-8 that during stall inception (and even during fully
developed stall) the proper choice of the shape of ¥¢ can allow experimental
observations to be closely modeled by the Moore-Greitzer model. It is also clear that
without the adjustment of A, the model is only qualitatively correct; the rotation
frequency is not well predicted by the basic model presented in Equation (13). The
explanation for this behavior is given by Hendricks et. al. [18] for the linearized case;
extension of the nonlinear model to include the unsteady loss effects they discuss (as
well as other effects, such as swirl sensitivity and deviation) is here approximated by
increasing A so that the rotation frequencies match. With this adjustment (which we
feel is justified due to its basis in the extended model [18],{20]), the ability of the
simulation to capture the nonlinear stall inception behavior is remarkable for
compressors C1 and C2. The discrepandes in C3 will be discussed in the next
section.

Di .

To understand the influence of Y on stall inception, consider a sinusoidal
velodity perturbation being mapped through a compressor characteristic, shown in
Figure 9. Here it is clear that at the peak of the characteristic, a linear representation
of is rarely sufficient; the slope of the characteristic is near zero, so higher order
derivatives become important. The high velocity portion of the wave experiences
attenuating pressure forces, because it accesses the stable side of the characteristic,
while the low flow side experiences destabilizing pressure forces. Because of the
interaction caused by partials with respect to 8 and 7 (Equation 8), the pressure rise
does not act alone to accelerat. the flow. Instead there is an ‘integrating action' of,
for instance, the first sinusoidal harmonic. If the integral effect of the positive and
negative parts of the characteristic causes a net ¢ ttenuating effect, then the wave will
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die away (or converge to a small amplitude limit cycle). If the integral effect is
amplifying, the wave will continue to grow, with a speed which depends at each
instant on the wave shape and its mapping through ¥c.

The two extremes of this general behavior are: 1) extremely gradual
characteristics, whose behavior can be adequately characterized using a linearized
analysis (with the proper choice of slope), and 2) characteristics which have very
abrupt changes in slope. In the latter case (when the unstable side is much steeper
(A>0), as in Figure 9), a sharp drop in pressure rise is experienced by the low-flow
part of the wave (if it is large enough to access the sharp change in slope). This
pressure drop overrides other influences and causes a quick, localized deceleration of
the flow (as in Figure 8). The drop in flow further reduces the overall pressure rise
delivered by the compressor, which moves the mean operating point towards lower
values (in order to satisfy the throttle characteristic, Equation 16). The system is
thus 'dragged’ into rotating stall at a rate which is premature when viewed from a
linearized standpoint. In fact, with the proper initial condition, some compressor
models can go into stall while they are at annulus-averaged operating points which
are still ‘stable’ in the linearized sense. In these cases, the domain of attraction of the
operating point has become very small, because of the existence of a nearby abrupt
change in the nonlinear mapping ¥Yc.

Of somewhat secondary importance to the stall inception behavior is the
slope of the throttle characteristic, ¥T. If ¥t is steep at the nominal operating point
(@¥r /¢ large), the annulus-averaged flow coeffident is insensitive to changes in the
pressure rise delivered by W¢. This is the case in C1 (Figure 6), in which the throttle
discharges to a plenum below atmospheric pressure, so the throttle line is very steep
during stall iniiation. This, combined with the shape of Y, accounts for the slow

transient into rotating stall.
When V7 is shallow (31 /g small), on the other hand, the nonlinearity of ¥¢

couples more immediately into changes in the mean flow as follows: ¥cmaps
energy from higher harmonics into the zeroth harmonic (this effect is represented by
the function [y($ +84)], , , and can be seen in Figure 9). This causes a loss in
annulus-averaged pressure rise, which must be accompanied by a relatively large
drop in §, if ¥t is shallow (see Equation (18)). Thus the rate at which the system is
'dragged’ into rotating stall depends in part on the slope of ¥1. Compressor C3 is
the best example of this type of behavior - the transient from stall inception to fully
developed stall is well under one rotor revolution, partially because of the shape of

¥T.
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Figure 8 indicates that there is a bigger discrepancy between the simulated
and the measured stall inception behavior for compressor C3 than for C1 and C2.
Several factors contribute to this discrepancy. Most important is the effect of non-
axial flow on the measurements. Hot-wire anemometers are used to measure the
flow velodity in the experiments; these devices effectively measure the absolute value
of axial plus radial flow perturbations. In the C3 experiment, the hot wires are
mounted very close to the compressor face (n = 0), where significant non-axial and '
reverse flow perturbations exist. In the C1 and C2 experiments, on the other hand,
the hot wires are mounted further upstream of the compressor (n =-0.5 and n=-0.2
respectively) where the measured perturbations are primarily axial; a 'fluid dynamic
filter' exdsts (Equation (11)) which smoothes out the internal flow details, allowing
the more global influences (those modeled by Moore-Greitzer) to be observed.

The philosophy that modeling global effects is sufficient for studying
transient rotating stall behavior is not universally applicable in low-speed axial
compressors. Day [19] has measured stall inception behavior which must be
observed in detail to be fully understood. In such cases, the Moore-Greitzer model
requires further refinement; radial flow effects as well as secondary flows may need
to be at least partially accounted for to properly model these stall phenomena.
Including these effects would make the model 3-dimensional (radial variations not
ignored) instead of 2-dimensional, and increase their complexity considerably.

Another important conclusion that one can draw from the results presented
here is that nonlinear effects, when they are important, often manifest themselves as
high spatial frequencies in the stall transients. In both C2 and C3, the rotating stall
precursor wave starts as a sinusoidal wave (first spatial harmonic). During stall
inception, however, significant spatial harmonic content above the first harmonic
exists in the wave shape as it transitions into rotating stall. Figure 9 is an example of
how this comes about - it shows a first harmonic perturbation 8¢ being transformed
into a 2nd harmonic acceleration term dy. Figure 10 shows the result - during stall
inception, what began as a 1st harmonic perturbation becomes a multi-harmonic
perturbation, eventually transitioning again to a 1st-harmonic dominated fully
developed stall cell. This complex behavior may indicate that approximations which
model only the first spatial harmonic (Galerkin approximation, (7]) do not capture
the important nonlinear effects at stall inception accurately enough to allow realistic
control law design.
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Conclusions

A nonlinear, control-theoretic form for the Moore-Greitzer model has been

presented. This form is sufficient to accurately model nonlinear stall-inception
behavior provided a) the unstable part of the compressor characteristic is properly
adjusted, and b) the effects of unsteadiness on the pressure rise delivered by the
compressor are inciuded (either theoretically, as in (18], or approximately, which
involves adjusting the inertia parmeter A). Stall inception, rather than fully
developed stall, is used as a means to verify the Moore-Greitzer model of rotating
stall. The effects of the shape of the pressure rise characteristic have been elucidated
through evaluation and comparison of experimental and simulation results. The
most important conclusions are:

a) The steepness of the characteristic on its unstable side compared to its stable
side determines, to a large extent, the character of stall inception.

b) second and higher harmonics often interact strongly with the first harmonic

during stall inception.
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Table I - Compr r Parameter,

C1 2 C3
U (speed at mean wheel radius) 73m/s 72m/s 36m/s
R (wheel radius) 0.259 m 0.287m 0.686 m
¢ at stall inception 0.433,0445  0.467 0.433
Kt at stall inception 8.1,8.6 9.38 6.25
I 8.0 6.66 4.75
B 0.1 0.1 0.1
m 2 2 2
m 0.65 1.29 0.42
A 0.18 0.68 0.25
Aeff (see [20], adjusted to match frequendes)  0.48 0.95 0.4
measurement position n=-05 n=-02 n=0
nondim. convection time (used for 0.3 0.3 0.3
unsteady 10ss approximation)
Table II - Compressor Characteristics
1.9753-62 - 0.098765-¢ + 0.051235 ; $<0.025
yeld) = ~12.776-¢° + 6.3946-9% - 0.29577-¢ + 0.053597 ; 0.025 < ¢ <0.30
-5.5363-% + 7.7202:¢° - 4.2045-¢% + 1.1276-¢ + 0.071953 ; ¢ >0.30
2
12.117-6% - 2.4235-¢ + 0.22117 ; $<0.1
Vl®) ={ —49.624¢> + 39.509-0> - 6.4130-¢ +0.39584 ;0.1 <$<0.40
-10.0695-¢% +9.4301-¢ — 1.1848 ; 6> 0.40
44%-29+05 ; $<0.25
Vel®) = -143.14-¢° + 143.04-9% - 44.683- +4.7172 ; 025 <$ <0.405

-13.36542 +11.574-¢-1.9206 ;  0.405<$<0.4638
-5.4283-¢% + 42112:¢ - 121325 ; &> 0.4638
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Figure 1 - Compression system components: A - inlet duct, B - compressor,

Pressure Rise (or Drop), y

C - downstream duct, D - throttle.

X equilibrium points for throttle
throttle settings shown

stable equilibria
unstable equilibria

throttle characterstic

Flow Coefficient, ¢

Figure 2 - Compressor and throttle behavior during a typical experimental test.
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Fxgura 3-5 - Compressor and throttle characteristics used to simulate rotating

stall inception in compressors C1, C2, and C3. Transients of annulus
average (a.a.) pressure vs. flow during stall inception are also shown,
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III. ACTIVE CONTROL OF ROTATING STALL EXPERIMENTS
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Active Control of Rotating Stall in a
Low Speed Axial Compressor

J. PADUAND, A. H. EPSTEIN, L. VALAVANI, J. P. LONGLEY*, E. M. GREITZER, G. R. GUENETTE
Gas Turbine Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

The onset of romting stall has been delayed in a low speed,
single-stage, axial research compressor using active feedback control.
Control was implemented using a circumferendgal array of hot wires
to sense rotating waves of axial velocity upstream of the compressor.
Circumferentially travelling waves were then generated with
appropriate phase and amplitude by "wiggling” inlet guide vanes
driven by individual actuators. The control scheme considered the
wave pattern in terms of the individual spatial Fourier components.
A simple proportional control law was implemented for each
harmonic, Control of the first spatial harmonic yielded an 11%
decrease in the stalling mass flow, while contol of the first and
second harmonics together reduced the stalling mass flow by 20%.
The control system was also used to measure the sine wave response
of the compressor, which behaved as would be expected for a second
order system.

NOMENCLATURE

Cn complex spatial Fourier coefficient (Eq. (5))
IGv inlet guide vane
mode number
static pressure
total pressure -
. congoller gain (R, = 2,1) .. R,
mean compressor radius
non-dimensional time (= Utr)
meéan compressor bisde speed
axial velocity measurement (Eq. (5))
coatroller complex gain and phase
controller phase for n'th mode (B, = Z,))
IGV sagger angle
pertrbed quantity
circumnferential coordinate
rotor inerda parameter
TOLOF + StALOT inertia parameter
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HiGv IGV inertia parameter

P density

¢ local flow coefficient (axial velocity/U)
¢ area averaged flow coefficient

\} compressor pressure rise (P-P1) / (pU2)
Subscripts _

n'th circumferential Fourier mode

real part of complex quantity

imaginary part of complex quantity

INTRODUCTION

D

Axial compressors are subject to two distinct acrodynarnic
instabilides, rotatng stall and surge, which can severely limit
compressor performance. Rotating stall is characterized by a wave
travelling about the circumference of the machine, surge by a
basically one-dimensional fluctuation in mass flow through the
machine, Whether these phenomena are viewed as distnct (rotting
stall is local to the blade rows and dependent oaly on the compressor,
while surge involves the entire pumping system - compressor,
ducting, plenums, and thrordle) or as relsted (both are natu 1l modes
of the compression system with surge corresponding o the zeroth
ordernwdc).thcyxenmﬂycannot be tolerated during compressor _
operation. Both rotating stall and surge reduce the pressure rise in -
the machine, cause rapid heatng of the blades, and can induce severe
mechanical distress.

The traditional approach to the problem of compressor flow
field insabilities has been to incorporate various fearures in the
aerodynamic design of the compressor to increase the stable
operating range. Balanced stage loading and casing treamment are
examples of design feanmes that fall into this category. More
recendy, techniques have been developed that are based on moving
the operating point close to the surge line when surge does nox
threaren, and then quickly incressing the margin when required,
cither in an open or closed loop manner. The open loop techniques
are based on observation, supported by many years of experience,
that compressor subility is sqongly influenced by inlet distoraoas
and by pressure oansients caused by augmentor ignition and, in tum,
that inlet distortion can be correlated with aircraft angle of anack and
yaw angle. Thus, significant gains have been realized by coupling
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the aircraft flight controt and engine fuel control so that engine
operating point is continvally adjusted to yicld the minimum stall
margin required at each insmntancous flight condition (Yonke et al.,
1987).

Closed loop stall avoidance has also been investigated. In
- these studies, sensors in the compressor were used to determine the
onset of rotating stall by measuring the level of unsteadiness. When
stall onset was detected, the contro system moved the operating -
point to higher mass flow, away from the stall line (Ludwig and
Nenni, 1980). While showing some effectiveness at low operating
speeds, this effort was constrained by limited waming tme from the
sensors and limited control authority available 10 move the
compressor operating point.

This paper presents the inital results of an alternative and
fundamentally different means for attacking the problem posed by
rotating stall. Here, we increase the stable flow range of an axial
compressor by using closed loop contol to damp the unsteady
permurbations which lead to rotating stall. In contrast to previous
work, this dynamic stabilization concept increases the stable
operating range of the compressor by moving the stall point to lower
mass flows, as illustrated conceptually in Fig. 1. There appear to be
at least two advantages of this new technique. One is that engine
power always remains high with dynamic stabilizaton while power
must be cut back with stall avoidance (often at critical points in the
flight envelope). A second advantage is that the gain in operating
range can be potentally greater. In the following sections, we briefly
describe those elements in the the theory of compressor stability that
are relevant 1o active smbility enhancement, discuss the design of the
experimental appararus, and present the experimental results.

C tal View of C. Stabilit
and Active Stall Controt

We consider rotaring stall to be one of the class of natural
instabilides of the compression system, as analyzed for example by
Moore and Greirzer (1986) for low-speed machines of high hub-to-
tp radius ratio. Their model predicts that the stability of the
compressor is tied to the growth of an (inidally small amplitude)
wa-e of axial velocity which travels about the circumference of the

Region SUl'ge Line
Stabilized / ith Control
With Active
. Control Actively Stabilized
Operating Point

Performance
improvement

rating Point
hout ontrol

Pressure Rise

Surge Line AN Constant
Without Control Speed Line
Mass Flow

Fig. 1: The intent of active compressor stabilization is 1o move the
surge line to lower mass flow

compressor. If the wave decays (i.c. its damping is greater than
zero), then the flow in the compressor is stable. If the wave grows
{wave damping negative), the flow in the compressor is unstable.
Thus, wave growth and compressor flow stability are equivalent in
this view.

One prediction of this model that is useful for present
purposes is that rotating waves should be present at low amplitude
prior 1o stall. McDougall (1988, 1989) has identified these waves in
a low speed, single-stage compressor, and Gamier, et al (1990)
observed them in both a single and a three-stage low speed
compressor, ard in a three-stage high speed compressor. The waves
were often evident long (ten to one hundred rotor revolutions) before

* " stall. Itrwas found that the waves grew smoothly into rotating stali,

without large discontinuitics in phase or amplitude, and that the wave
growth rate agreed with the theory of Moore and Greitzer (1986).
Further, the measurements showed how the wave damping, and thus
the instantaneous compressor stability, could be extracted from reai
time measurements of the rotating waves.

In 1989, Epstein, Ffowcs Williams, and Greitzer suggested
that active control could be used to artificially damp these rotating
waves when at low amplitude. If, as the theory implies, rotating stall
can be viewed as the mature form of the rotating diswrbance,
damping of the waves would prevent rotating stall from developing,
thus moving the point of instability onset as in Fig. 1. It was
proposed that the compressor stability could be augmented by
crearing a ravelling disturbance with phase and amplitude based on
real time measurement of the incipient instability waves. This paper
presents an experimental investigadon of this idea.

The basic concept is to measure the wave pattern in 4
compressor and generate a circumferendally propagating disturbance
based on those mezsurements $o as to damp the growth of the
naturally occwrring waves. In the particular implemenudon
described herein, shown schematically in Fig. 2, individual vanes in
an upstream blade row are "wiggled” to create the travelling wave
velocity disturbance. The flow which the upstream sensors and the
downstream blade rows see is a combination of both the naturaily
occurring instability waves and the imposed conwol disturbances.
As such, the combination of compressor and congroller is a different
machine than the original compressor - with different dynamic
behavior and differeac saability.

At this point, it is appropriate to present the rotating stall
model and connect it with the idea of control. Here, it is the structure
of the model that is most important rather than the fluid mechanic
details. Since the structure provides a framework for design of the
control system, the quantitative details can be derived by fiting
experimental data to the model.

The existing models for rotating stall incepdon in multi-row
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Fig. 2: Conceptual control scheme using "wiggly” inlet guide vanes
to generate circumferential travelling waves




axial compressors are typified by an equation for the velocity and

pressure perturbations of the form
8P¢°m9m - 8pTcomprm
exit ( )8¢ )‘QSQ 9&‘; m
pU? ot

Here, 8P and 3Py are the static and total pressure perturbations
respectively, 8¢ is the non-dimensional axial velocity perturbation, A
and 1 are non-dimensional parameters reflecting the fluid inertia in
stator and rotor passages respectively, (dy/d¢) is the slope of the
non-dimensional compressor characteristic, and t is a non-
dimensional time, T = tU#. Equation (1) has been shown in several
publications (¢.g. Hynes and Greizer, 1987; Longley, 1988) and we
will no- present its development here. The equation is an expression
of the matching conditions {across the compressor) for flowfields
upstream and downstream of the compressor and, as such, upstream
and downstream flow field descripdons are needed to be able to find
a solutgon.

Using these, Longley (1990) has shown that one can put Eq.
(1) in a wave operator form. For the nth spatdal Fourier coefficient,
this is ) ,

2., ]iu s0=(34)s @

{Gd oF; 0=(qe]5¢

The left-hand side of Eq. (2) is a convective operator corresponding
to circumferential propagadon with velocity 3/(2/(Inl + 1)) - (rotor
speed). In addition, the growth rate of the wave is dependent on the
slope of the compressor characteristic. If (dy/d¢) is positive the
waves grow; if negative they decay. Neutral stability (wave
travelling with constant amplitude) occurs at (dy/d¢) = 0.

We can cast Eq. (2) in a form that is more useful for contol
by considering a purely propagating disturbance. The first Fourier
mode will be of the form ¢8, so Eq. (2) can be written as

2+ u)as° [ (_!_)] 50 =0 3)

Thus far, the equations presented have been for flow associated with
uncongolled compressor dynamics. If, in addition, we model the
control as due to perrurbations in IGV stagger, &y, we obtain the
following equation for the first Fourier mode:

3se [ _(aw] [-— (?:z)_(a_v_— )]
(2+p) = +[11 30) 8¢ +lidpgv TYRER oGy AJl 87
- it (1..»',,;.&&1).35_7;.-0 4)

where § is the axisymmetric (annulus averaged) flow coefficient,
HiGy is the fluid inertis parameter for the IGV's, and (Ow/3y)
represents the incremental pressure rise obtainable from a change in
IGV sugger, v.

This is formaily aﬁmaderequwon for 8¢, however it
must be remembered that the quantity of interest is the real part of
8¢. If we express 8¢ in terms of its real and imaginary parts, §¢ =
Sop +16¢, then Eq. (4), which is a coupled pair of first order
equations for 8y and i34y, becomes mathematically equivalent to a
second order equation for S¢y. The form thus used in the system
identification discussed below is thus second order. Another way to
state this is that a first order equation with & complex (or pure
imaginary) pole is equivalent 1o a second order system in the

appropriate real valued suates.

The second order modet of compressor behavior is useful for
two reasons. First, it can be tested experimentally in a
straightforward manner. Second, it provides both a conceptual
qualitative framework about which to design a control system (i.e.
the stabilization of a second order system) and, given the resulls of
the experimental test, the quantiative inputs required 10 do the conao!
system design.

EXPERIMENTAL APPARATUS

A 0.52 meter diameter, single-stage low speed research
compressor was selected as a test vehicle due to its reladve
simplicity. The general mechanical construction of the machine was
described by Lee and Greiwzer (1988), and the geomerry of the build
studied here is given in Table 1. The apparatus can be considered to
consist of four sections: the compressor (described above),
insrumentadon for wave sensing, acwuators for wave launching, and
a signal processor (controller). The design of the last three

components is discussed below.
TABLE 1

SINGLE-STAGE COMPRESSOR GEOMETRY
Tip Diameter 0.597 m
Hub-to-Tip Ratio 075
Axial Mach No. 0.10
Operating Speed 2700 RPM

IG.! Rotor Stator

Mean Line Sugger 35° 2.5°
Chamber Angle - 0 25° 25°
Solidity 0.6 1 1
Aspect Ratio 09 20 1.9

The sensors used in the present investigation are eight hot
wires evenly spaced about the circumference of the compressor, 0.5
compressor radii upstream of the rotor leading edge. The wires were
positioned at midspan and oriented so 2s to measure axial velociry.
Hot wires where chosen because their high sensitivity and frequency
response are well suited to low speed compressors. The sensors
were positioned relatively far upstrearn so that the higher harmonic
components of the disturbances generated by the compressor would
be filtered (the decay rate is like ¢-AIXVT, where n is the harmonic
nurnber). This reduced the likelihood of spatial aliasing of the signal.
With eight sensors, the phase and amplitude of the first three distur-
bance harmonics may be obtained. The outputs of the anemometers
were filtered with four pole Bessel filters with a cutoff frequency of
22 times rotor rotation. The axial location of the sensors is impormant
in determining the signal to noise rado (SNR) of the rotating wave
measurements; this question was studied by Gamier et al. (1990),
who showed the SNR to be greatest upstream of the stage..

There are many ways to generate the required travelling
waves in an axial compressor. Techniques involving oscillating the
inlet guide vanes (IGV's), vanes with oscillating flaps, jet flaps,
peripheral arrays of jets or suction ports, tip bieed above the rotor,
whirling the entire rotwor, and acoustic arrays were ali considered on
the basis of effectiveness, complexity, cost, and technical risk. For
this initial demonstration in a low speed compressor, oscillating the -
IGV's was chosen on the basis of minimum technical risk.

Considersble care was taken in design of the actustion system
10 maximize effectiveness and minimize complexity and cost. An
unsteady singuiarity method calculation of the porendai flow gbout a
cascade was carried out first 10 evaluate tradeoffs between blade
angle of atack and flow turning angles versus cascade solidity,
fraction of the cascade actuated, and airfoil aspect ranio (Silkowski,
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1990). The unsteady flow was examined since, although the reduced
frequency of the IGV airfoil relative to rotating stall is about 0.3 for
the first harmonic, several harmonics may be of interest.
Calculations were also performed to evaluate the relative
effectiveness of bang-bang actuation versSus consinuous airfoil
positioning. As an example of these actuation studies, the radeoff
berween the peak airfoil angle of artack excursion and the fraction of
the cascade actuated is shown in Fig. 3. As the fraction of the airfoils
which is actuzated is increased, the angle of artack requirements on
individual blades are reduced.

The limits 1o blade motion are set by both mechanical
constraints (i.c., actuator torque limits) and airfoil boundary layer
separation at large angles of aack. A NACA 65-0009 airfoil section
was chosen due 10 its good off-angle performance and relatively low
moment. The airfoils were cast from low density epoxy to reduce
their moment of inertia. A coupled steady inviscid-viscous solution
of the flow over the blades indicated that the boundary layers would
stay atmached at angles of anack up 1o fifteen degrees (Drela, 1988).

In this experiment, blade actzation torque requirements are
set by the airfoil inertia since the acrodynamic forces are small. Both
hydraulic and electric actuators are commercially available with
sufficient torque and frequency response. Hollow core D.C. servo
motors were selected because they were considerably less expensive
than the cquivalent hydravlic servos. The blades and motors have
roughly equal moments of inertia. .

For a given IGV solidity, the number of actuators required
can be reduced by increasing the biade chord, but this is constrained
by sctuator torgue and geometric packaging. The final IGV design
consists of twelve untwisted oscillating airfoils with an aspect ratio of
0.9 and a solidity of 0.6 (Fig. 4). The complete actuation system has
a frequency response of 80 Hz (approximately eight times the
fundamental rotating stall frequency) at plus or minus ten degrees of
airfoil yaw. The flow angle distribution measured at the rotor leading
edge station (with the rotwor removed) for a stationary ten degree
cosine saagger patiern of the IGV's is compared in Fig. Sto &
prediction of the same flow made by Silkowski (1990).

The control law implemented for the tests described here is a
simple proportionality; at each instant in time, the n® spatial mode of
the IGV stagger angle perturbation is set to be directly proportional to
the nl mode of the measured local velocity perturbation. The
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" Fig. 41 Compressor flow path

complete control loop consisted of the following steps. First, the
sensor signals are digitized. Then, a discrete Fourier transform is
taken of the eight sensor readings. The first and/or second discrete
Fourier coefficients are then multiplied by the (predetermined)
complex feedback gains for that mode. Next, an inverse Fourier
transform is taken which converts the modal feedback signals into
individual blade commands. These, in tum, are then sent to the
individual digital motor controllers. Additional housckeeping is also
performed to store information for post-iest analysis, limit the motor
currents and excursions (for mechanical protection), and correct for
any accumulated digital errors.

The contoller hardware selection is set by CPU speed
requirements (main rotating stall control loop and individual blade
position control loops), /O bandwith (sensor signals in, blade
positions out, storage for post-1est analysis), operating system
overhead, and cost. The final selection was a commercial 20 MHz
80386 PC with co-processor. A multiplexed, twelve bit analog to
digital converter digitized the filtered hot wire outputs. The D.C.
servo motors were controlled individually by commercial digital
motion contol boards. Using position feedback from optical
encoders on the motors, each motor controller consisted of a digital
proportional, integral, derivative (PID) controlier operating at 2000
Hz The entire control loop was run at a 500 Hz repetition rate.
Motor power was provided by 350-wan D.C. servo amplifiers. The
complete hardware arrangement is shown in Fig. 6.
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Fig. 5: A comparison of the measured and calculated flow angle
generated 0.3 chords downstream by a 10 degree cosine
stagger pattern distribution of 12 inlet guide vanes
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OPEN LOOP COMPRESSOR RESPONSE

The inputs and outputs that characterize the fluid system of
interest (the compressor and associated flow in the annular region)
are the inlet guide vane angles (inputs) and the axial velocity
diszibution (outputs). In the present configuration this consists of
twelve inputs (twelve inlet guide vanes) and eight cutputs (eight hot
wires) so that the system is multiple input-multiple output. Because
the disturbances of interest are of small amplitude, the system
behavior can be taken as linear and we can thus express the spadal
distribution of the input and output perturbations (or indeed of any
other of the flow perturbations) as a sum of spatal Fourier
components, each with its own phase velocity and damping. This
representation, which is consistent with Eq. (2), allows us to treat the
disturbances on 2 harmonic-by-harmonic basis, and reduces the the
input-output relationship to single input-single output terms, an
enormous practical simplification. .

The complex spatial Fourier coefficient for each mode n is
given by -

o 5, veon]- 245

where K is the number of sensors about the circumference (8 in this
case), and Vy, is the axial velocity measured at angular position k.
The magnitude of C; is thus the amplitude of the first harmonic at
any time and its phase is the instantaneous angular position of the
spatial wave Fourier component. -

An impormant concept in the present approach is the
connection between rotating stall and ravelling wave type of
disturbances in the compressor annulus. In this view, the wave
damping and the compressor damping are equivalent and determine
whether the flow is stable. At the neutral stability point, the damping
of disturbances is zero, and close to this point , the damping should
be smail. (The measurements given by Gamier, et al. (1990) show

this.) Thus, for a compressor operating point near stall, the flow in
the annulus should behave like a lightly damped system, i.c., should
exhibit a resonance peak when driven by an external disturbance. As
with any second order system, the width of the peak is a measure of
the damping.

The present appararus is well suited to establishing the forced
response of the compressor since the individual inlet guide vanes can
be actuated independently to generate variable frequency travelling
waves. The sine wave response of the compressor was measured by
rotating the £10 degree sinusoidal IGV angle distribution shown in
Fig. 5 about the circumference at speeds ranging from 0.05 to 1.75
of rotor rotational speed. Figure 7 shows the magniwude of the first
spatial Fourier coefficient, as a percentage of the mean flow
coefficient, as a function of input wave rotation frequency, i.c. the
transfer function for the first spatial roode.

The peak response to the forcing sine wave is seen in Fig. 7
to be at 23% of the rotor rotation frequency. This is close to the
frequency observed for the small amplitude waves without forcing
(20%) and for the fully developed rotating stall (19%). This behavior
supports the view stated previously that the compressor behaves as a
second order system.

CLOSED LOOP EXPERIMENTS - ROTATING STALL
STABILIZATION OF THE FIRST FOURIER MODE

While the open loop experiments described above are of
interest in elucidaring the basic structure of the disturbance field in the
compressor annulus, this work is principally aimed at suppressing
rotating stall using closed loop conrol. To assess this, experiments
were performed using & control scheme of the form

(571G vInth mode = Zn Cn ©

where
Z, m Ry eibn )
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In Egs. (6) and (7). dnigv is the change in inlet guide vane stagger
angle. The quandty Z;, is the complex feedback gain for the nth
Fourier mode (n'th spatial harmonic component of the disturbance),
with Ry, the amplitude and B, the phase angle berween the measured
axial velocity spatial harmonic (0.5 radii upstream of the rotor) and
the input inlet guide vane angular position spatial harmonic. The
influence of feedback amplitude (Rp) and phase (B,) were
established with a set of parametric experiments carried on at a flow
coefficient (9) close to stall, in a region of marginal flow stability.
Data is shown in Fig. 8 in the form of the power spectral
-density (PSD) of the first spatial mode axial velocity disturbance
(Cy) at two controi phase angles (B;), 0° and 45°. The operating
point is fixed at a normally stable flow coefficient of ¢ = 0.475 (stall
without control occurs &t ¢ = 0.430). For ¢ach phase, spectra are
shown with feedback control and with no congol (vanes stationary at
zero flow angle). The rotating disturbance is evident in the soong
peaks at 23% of rotor rotation frequency. The height of the peaks is
a measure of the swength of the rotating waves. The scales are
dimensional but all plots are to the same scale so they can be
compared direcdly. The difference between the peak heights with no
control in the two cases is due 1o finite sampling ume, ic., 10
differences in the ambient disturbance levels during the sampling

period.

At 0° phase angle, the peak at 0.23 frequency is higher with
active control than with fixed vanes, implying that the feedback
conwol at this phase is amplifying the rotating disturbance waves (i.e.
making them less stable). At 45° phase angle, however, the peak
with control is lower than that with fixed vanes, implying that control
is antentuating the waves in this case. Thus, the ratio of the height of
the peak in the PSD with and without control (ie. the wave
amplification) is a measure of the effectiveness of the feedback in
influencing the travelling wave's stability. The influence of controller
phase (B,) at fixed gain on the wave amplitude ratio was
experimentally evaluated for phase shifts between 0° and 360°, as
shown in Fig. 9. For phases between 0° and 150°, the waves are
atentuated, while the waves are amplified for phase angies beeween
160° and 350°. The maximum atienuation found was roughly 30 at
By = 75° and the maximum amplification of a factor of 1,300 occurs
at By = 275°. Between 1 = 290 and Py = 345, the system is
unstable (i.e. goes into rotating stall).

If wave subility is equivalent to compressor stability, then
compressor stability should be enhanced for conrol phases at which
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the waves are attenuated and should be decreased when the waves are
amplified. This is indeed the case as illustrated in Fig. 10. Here, the
flow coefficient (9) at which the compressor goes into rotating stall
as the compressor throttle is very slowly closed (dg/dt = 2x10°5/
rotor revolution) is shown as a function of controller phase angle
(B,). Depending upon the phase, the control changes the stalling
flow coefficient by as much as +11%. Comparison of Figs. 9 and

10 makes clear the connection between wave damping and rotating
swll. Rotating stall is suppressed when the waves are damped and is
promoted when the waves are amplifted.

Figure 11 shows the influence of control of the first spatial
harmonic wave in a more familiar form of non-dimensional pressure
rise (y) versus non-dimensional mass flow (flow coefficient, ¢) at
constant corrected compressor speed. With fixed inlet guide vanes
(no control), the compressor stalls at ¢ = 0.43. With feedback control
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Fig. 11: Non-dimensional pressure rise (y) versus mass flow ($)
characteristic showing the measured influence of feedback
control of the first spatial mode on compressor operating
range

(a) Sensor Output [20 ms

wm-.ww\,v\/\l ! A
——
WWWW\/\NV\ /

I \AV\
WMWW\/\/V
AWV

v ¥ L ) T

Axlal Velocity Perturbations

(b) IGV Position I 20°

Blade Angle

-40 .30 .20 -10 0 10

Time, Rotor Revolutions
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at the most effective phase found (B = 60%), the stlling flow
coefficient is ¢ = 0375, 11% lower. At the phase producing the most
wave amplification (B; = 275°), the stalling flow coefficient is 0.475.

Much can be learned from examining the time resolved
behavior of the controtled compressor as the throttle is very slowly
closed at a controller phase (B;) of 60°. The overall system behavior
is shown in Fig. 12. Here, the onset of stall occurs at & non- )
dimensional time of 0. Prior to that time, the sensor output is small
relative to the rotating stall amplitude. The actuators, however, are
clearly producing a travelling wave. (The actustor response to the
rotating stall after stall onset is due w0 the light damping of the blade
$ervos.) )

The time evolution measured by a single sensor is shown in
Fig. 13. For this compressor with no control (Fig. 13a), the rotating
stall grows quite slowly. With control of the first spatial mode (Fig.
13b), the growth is much faster. (Note that this occurs at a lower
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flow coefficient than Fig. 13a.) Further, the disturbances with
conwol have twice the frequency as in the no control case. This is
due to the primary disturbance now being a two-cell rotating stall, i.e.
the second spatial mode.

- The influence of first mode conwrol on the disturbance modal
strucrure is ilusgrated in Figs. 14 and 15, which show disturbance
phase and amplitude versus time. A linear variation of phase with
tme indicates that the disturbance is propagating at constant speed.
Without control (Fig. 14), both the first and second spatial modes are
evident in both magnitude and phase for 40 rotor revolutions before
stall. The first mode is clearly the strongest everywhere and the fully
developed stall is an admixture of bath modes. When the first spagal
mode is controlled (Fig. 15), it is the second which is stronger prior
1o stall, and predominates in the fully developed rotating stall

Since the second spatial mode appears predominant when the
first mode is under control, it makes sense 10 conuo! the second mode
as well. The effect of simultaneous control of the first two spatial
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modes on compressor stalling pressure rise is shown in Fig. 16.

With both modes under the conmol, the compressor does not stall
undl a flow coefficient of ¢ = 0.35, a 20% increase in operating range
over the no congrol case. Examination of the time behavior of the
Fourier coefficients, as the compressor throttle is slowly closed (Fig.
17}, shows that, prior to stall, the first and second modes are of about
equal strength. At the stall point, the second mode growth is inidally
more rapid but fully developed stall is predominantly the first mode.
This suggests that (nonlinear) mode coupling is important as the wave
marures. The measured third spatial mode is relatdvely weak.

SYSTEM IDENTIFICATION .

The measurements presented have been for 2 compressor
with a simple proportional control law, on¢ whose rationale is based
on a linear theory as summarized by Eq. (4). There are many
analytical tools now available to design more sophisticated control
schemes with, hopefully, improved performance. The success of the
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congol design, however, will be based in no small part on the fidelity
of the system model assumed for the compressor. Also, we are
interested in understanding more about the compressor fluid
mechanics. The apparatus assembled for the active controf
experiment is well suited to quantitatively establishing the dynamic
response of the compressor by directly measuring its transfer
funcdon.

The magnitude behavior of the compressor response to IGV
moton was given in Fig. 7. This behavior can be put into a more
complete form, and compared o at least the structure of the fluid
dynarnic model, by plotting the phase and magnitude (Bode
diagram) of the transfer function between the first Fourier coefficient
of IGV motion and the first Fourier coefficient of the resulting axial
velocity perturbadons. This transfer function has both a magnitude
and a phase, which results from both spatial and time lags between
the input and output. We expect the behavior of this system based
on the modelling described earlier 10 be that of a second order
system. This should be easily identifiable from experiments such as
a rotating sine wave response, for example.

We can express the fluid model of Eq. (4) in more
convenient transfer function form as

8¢ g S+t(A+Bi)
57(5) I‘:s+(C+Di) ®
where s is the Laplace transform variable. The complex form of this
transfer function gives rise to second-order behavior in the measured
variables, as mentoned previously. The advantage of this form is
that it uses the minirnum number of parameters to compietely
specify the transfer characteristics of the system. A linear regression
type fit (Lamaire, 1987) can be done for the parameters K, A, B, C,
and D. This gives rise to the results shown in Fig. 18, where it can
be seen that the respoase characteristics in the experiment are
mimicked by the model. We have obtained this type of fit using
various types of IGYV inputs; rowadng waves, stationary waves with
oscillating amplitudes, and stadonary waves with random
amplitudes. As would be expected in a linear system, the input-
output behavior is unaffected by such variations in the character of
the input. More details on this system identification can be found in
Paduano et al. (1990). Overall, the fit of the second order model to
the measurements is very good.

In sumumary, the fidelity of the model fit to the data in Fig. 18
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Fig. 18: Bode plot showing response of the compressor to a sine
wave forcing exciation at ¢ = 0.475

indicates that structure of the fluid model of Eq. (4} is appropriate for
this compressor at the flow conditons examined. We have yet to
make the quantitative predicton of the Bode plot from the
COMPressor geomeuy.

DISCUSSION

The most important point of this paper is that these
experiments demonstrate that it is physically possible to actively
control rowting stall in an axial flow compressor and, by doing so,
obtain a useful extension in compressor operatng range. A second
point is that these experiments more firmly establish a clear link
berween low ampliwde circumferendally propagating disturbances
prior to stall and fully deveioped rotating stall - when the
disnurbances are suppressed, rorrng stall is prevented. This initial
atemnpt to conwol rotating stall is encouraging. As is often the case,
however, these results raise many more questions than they answer,
These questions thus suggest future research directions.

The control law used in the experiments reported herein is
quite simple. Considerable effort is being spent on the design of
more sophisticated, and hopefully more effective, controllers. The
controllers can be useful in two ways — first, in extending
compressor performance and, second, in elucidating the details of the
dynamic behavior of the compression system.

At the moment, we do not have a quanttative explanatdon for
the experimentally observed limit to conwol effectiveness on this
compresso (Le. why is there 2 20% flow range improvement rather
than a2 10% or 30% improvement). Preliminary investigadons show
that, insofar as the linear system analysis exemplified by Eq. (8) is
concerned, the bandwidth and actuator authority limits of the current
system have not yet been reached. Another possibility is that higher
order modes may drive the instability. Measurements 10 date have
not shown that the third spatial mode is sorong (the highest mode
which can be resolved with the present instrurnentation). Various
other nonlinearities can be important. Also, at some flow
coefficients, the assumptions which underlie the wave model (Eq.
(4)) and the actuation scheme chosen may cease o be valid (i.e, two-
dimensional flow). Work is ongoing 10 address these questons.

There are also more general issues raised that go beyond the
behavior of this particuiar compressor. We have no basis on which




to quanctagvely exgapolawe rotaang stall congol beyond the machine
ested. We note, however, that the wave behavior expiosed 10 this
contol scheme has been observed on other fow and hign speed
compressors by McDougail and Garmer. Thus, we mught capect
that those machines could be controlied in a samilar fashion © 2
greater or lesser degree. This quesgon can only be addressed in
substance by experimenial invesngation of other builds of thus
compressor and of other compressors. A wcond approach 15 1o
quanatatively reconcile the sysiem behavior such ay observed
experimentally in Fig. 18 with a firse principles fluid mecharuc modet
related 10 compressor geometry as exemplified by Eq. (4). Ths
would facilitate more scgurate predictions of compressor behavior
with conrol. Work is ongoing in both areas.

Another concem is the generality of the roanng siall madel.
Certainly such assumptions as two-dimensioaality and
incompressible flow are of limited applicability. These models can
and are being made more elaborate as fidelicy wath experimenai daa
requires. It is imporant 1o emphasize here that the concept of acuve
control of compressor instabilities is not dependent on the accwrKy
of any particular mathemancal model or conceptual view of the flow
in & compressor. The model is there 1o provide a framework about
which to design a control system. Any mode! would do (assuzung
it was an accurate representagon of the fluid mecharucs), although
cerainly some formulagons are much more mractable {or con i
design than others.

Actuation schemes are also imporant since they influence
both the effectiveness of control and the complexity and dufficulry of
implementaton. The approach adopted here was chosen mainly on
the basis of minimurm technical nsk. Many other techniques can be
considered and each must be quanttanvely evaluated in werms of
conwol authority and implementation difficulry for & parucular
instailadon. Rescarch efforts in this area may be fratfui.

As a final point, we would like to commmnent on the
interdisciplinary nature of this research. The effort o dawc has been
successful due 10 the woek of both compressor and controls
engineers and it has been challenging for both speciaities. (n the pase
scveral years, we have spent considerable time leaming how o alk
with each other and can report that the effort appears so far 1o be
rewarding.

CONFLUSIONS

Rotating stall in a low speed axial compressor has been
suppressed using active feedback congol To date, 2 20% gain in
compressor mass flow range has been achieved. The measured
dynamic behavior of the compressor has followed predictions from 2
two-dimensional compressor stability model. These results reinforce
the view that the compressor stabiliry is equivalent o the stbility of
low amplitude waves which tavel about the machine
circumferentially.

This is a progress report on an ongoing effort. The results so
far indicaic that active control of large scale fluid mechanic
instabilites such as rotating sall in axial compressars is very
promising. Much work still needs o be done o assess the practical
applicability of these resuits.
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+ "TIVE STABILIZATION OF ROTATING STALL
IN A THREE-STAGE AXIAL COMPRESSOK
by
I.M. Haynes, G.J. Hendricks, and A H. Epstein

ABSTRACT
A three-siage, low speed axdal research compressor has been actively stab.’ized by

damping low amplitude circumferendally travelling waves which can grow into rotating stall.
Using a circumnferendal array of hot wire sensors, and an array of high speed individually
positoned contol vanes as the actuator, the first and second spadal harmonics of the compressor
were stabilized down to a characteristic slope of 0.9, yielding an 8% increase in operating flow
range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient The
actuators were also used open loop to determine the forced response behavior of the compressor.
A systemn identification procedure applied to the forced response data then yielded the compressor
wransfer funcdon. The Moore-Greitzer, 2-D, stability model was modified as suggested by the
measurements to include the effect of blade row time lags on the compressor dynamics. This
modified Moore-Greitzer model was then used to predict both the open and closed loop dynamic
response of the compressor. The model predictions agreed closely with the experimental results.
In particular, the model predicted both the mass flow at stall without control and the design

parameters needed by, and the range extension realized from, active control.
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NOMENCLATURE

An

W

Lyss
Ls

LS 13

SL,

&fwzeady

BLquasi-steady

Pre

o~

Annulus flow area

Coefficient of nth spatial mode of flow coefficient perturbation

Axial chord

Non-dimensional axial chord

Total pressure loss

Total pressure loss across rotors

Steady total pressure loss across rotors

Total pressure loss across stators

Steady total pressure loss across stators
Perturbation in total pressure loss across rotors
Perturbation in total pressure loss across stators
Unsteady total pressure loss perturbation
Quasi-steady total pressure loss

Spatial harmonic number

Exit static pressure

Exit total pressure

Inlet total pressure

Exit static pressure perturbation

Exit total pressure perturbation

Iniet total pressure perturbation

Compressor annulus mean radius

(g ~iw,)r
U

time
Non-dimensional time (Eq. (A10))

Torque
Rotor linear velocity at the mean radius




o Disturbance growth rate
¢ Flow coefficient cy/U
¢ Flow coefficient perturbation
A Inertia parameter for compressor rotors
KU Inertia parameter for compressor

Circumferential coordinate
p Fluid density
Tloss Unsteady total pressure loss characteristic ime
Tr Rotor total pressure loss characteristc time
Ts Stator total pressure loss characteristic time
T, Non-dimensional rotor total pressure loss characteristic time
T Non-dimensional stator total pressure loss characteristic time
Teonvection Non-dimensional blade passage convection time (Eq. (10))
o Disturbance rotational frequency
v Total-to-static pressure rise
17 Ideal total-to-static pressure rise
Vss Steady state total-to-static pressure rise
7 Torque coefficient —g——

pU“Ar

INTRODUCTION

Axial flow compressors suffer from inherent hydrodynamic instabilities known as surge

and rotating stall. Surge is a one-dimensional mass flow disturbance involving the entire

compression system, while rotating stall has a two- or three-dimensional structure rotatng about

and local to the compressor blading. Both are large amplitude disturbances, disrupting compressor
operation aad imposing large structural loads, and so are unacceptable in routine compressor

operation.

A useful theoretical model of compressor hydrodynamic stability started with Emmons et




al. (1955) and has evolved through Moore and Greitzer (1986). This analysis shows that surge
and rotating stall are simply the mature form of the natural oscillatory modes of the compression
system. Surge is the lowest (zero) order mode and rotating stall is the higher order modes. This
model predicts that these hydrodynamic disturbances start at very small amplitude (during which
time the modes may be considered as linear and decoupled) but quickly grow into their large
amplitude form, surge and rotating stall (which exhibit nonlinear behavior and whose dynamics
are coupled). Thus, the stability of the compressor is equivalent to the stability of these small
amplitude waves which exist prior to stall. Gamier et al. (1991), McDougal et al. (1990), and
Etchevers (1992) presented experimental data showing the existence of these low amplitude waves
and their evolution into stall in sgygral axial compressors. More recently, Paduano and Gysling
(1992) have shown that the details of the time evolution of the disturbances, especially the wave

form, is quite sensitive to the shape of the compressor pressure rise versus mass flow

characteristic.
Epstein, Ffowcs Williams, and Greitzer (1989) first suggcsrcd that surge and rotating stail

could be prevented by using active feedback control to damp the hydrodynamic disturbances while
they are still at small amplitude. Aside from reducing the control authority required, control of the
fluid disturbances while they still are at very low amplitude permits incipient surge and rotating
stall to be treated and controlled separately (since their behavior will be linear and decoupled).
Active suppression of surge was subsequently demonstrated experimentally on centrifugal
compressors by Ffowcs Williams and Huang (1989) and Pinsley et al. (1991), and on an axial
compressor by Day (1991). Paduano et al. (1991) demonstrated active suppression of rotating
stall in a single-stage low speed compressor. By damping the small amplitude travelling waves
rotating about the annulus prior 1o stall, they increased the stable flow range of the compressor by

25%.
The data of Paduano et al. provides strong experimental evidence that at least the

quantitative structure of the hydrodynamic stability theory is appropriate for this type of
compressor and that, indeed, rotating stall can evolve from small amplitude travelling waves since




damping these waves prevents the formation of rotating stall. In these experiments, the travelling
waves were decomposed into separate spatial harmonics with each harmonic controlled
individually. This showed that the linear and decoupled behavior preaicted by the Moore and
Greitzer theory did indeed occur. The theory, however, predicted that all spatial harmonics go
unstable at the same mass ﬁow, while the experiment showed that the lower the harmonic, the
higher the mass flow at instability. This behavior has an important implication for active control
since it means that all spatial harmonics need not be simultaneously controlled in order to realize an
increase in compressor operating range, greatly simplifying the physical realization of such a
control system.

In the work presented herein, we extend the experimental single-stage work of Paduano by
applying the same active control tcchr;iqucs to a three-stage, low speed research compressor. Both
open loop forced response and closed loop actively stabilized data are presented. We also extend
the two-dimensional, incompressible hydrodynamic stability theory of Moore and Greitzer to
include non-ideal effects such as time lags associated with the development of viscous losses and
deviations. These modifications have the effect of separating in mass flow the instabilities of
individual spatial harmonics as observed by Paduano. We then show that this theory does an
excellent job in quantitadvely predicting both the open and closed loop dynamic behavior of the
three-stage compressor. This includes predicting the natural stall point (inception of rotating stall
without control) and predicting both the controller parameters required and the improvement in
mass flow range gained from active control. Finally, we make some comments on the utility of an
actively stabilized machine for exploration of compressor dynamics.

Experimental Apparatus

A 0.6 meter diameter, three-stage low speed aiial research compressor was adapted for use
as a test article in these experiments. Work in this rig was previously reported by Gamache
(1990), Lavrich (1988), and Gamnier et al. (1991). The blading details are given in Table 1. The
control scheme adopted was that used by Paduano et al. in which the travelling waves of axial




velocity are detected by a circumferential array of hot wires just upstream of the compressor and
individually actuated vanes upstream of the rotor are used to generate the rotating disturbance
structure required for control. The test compressor was appropriately modified by moving the
inlet guide vanes (IGV’s) sufficiently far upstream so that control vanes could be placed between
the IGV’s and the first rotor. In this arrangement, the inlet guide vanes produce the mean swirl
while the unchambered control vanes provide the time and circumferential variations needed to
stabilize the compressor. Each of the twelve control vanes consisted of NACA 65-0009 cast
epoxy airfoils, cantilevered from a hollow core, high torque to inertia DC servo motor (Fig. 1).
Instrumentaton included circumferential hot wire, total pressure, and static pressure arrays
mounted throughout the compressor (Fig. 2). Additional measurements consisted of rotor speed
and torque, average compressor mass flow (from a venturi), and rig housekeeping.

The control system hardware is illustrated in Fig. 3. The signals from the eight hot wire
anemormeters mounted about the compressor circumference are filtered by four-pole Bessel filters
set at 1000 Hz, which is 25 times the shaft frequency, ws. The signals are then digitized by a 16-
bit A/D system in an 80486 computer, which implements the control laws and outputs the
commanded control vane positions to individual vane position control systems. These consist of
closed loop, PID position servos, one for each channel, feeding 350 watt servo amplifiers which
drive the DC servo motors. Optical encoders mountdd on each motor provide a vane position
signal to the feedback controllers. The vane servo loops operated at SO @y (2000 Hz), while the
entire control 10op in the computer was operated at 12.5 ws (500 Hz). The control vane dynamic
response was determined by driving the vane array with a pseudo-random binary signal with a
minimum pulse width of 2.5 os (100 Hz), while the compressor was operated near its stall point.
These measurements showed that the transfer function of the flow actuation system could be
modelled quite closely by two second order systems in series with a natural frequency of 170 Hz
and a damping ratio of 0.35. This yields a frequency response flat to 3 dB up to 3 a; (120 Hz).
The first spatial harmonic of rotating stall is approximately 0.3 s (12.5 Hz) in this compressor.

The computer control algorithms were also similar to those used by Paduano. Ateach




time step, the anemometer data is digitized and linearized into axial velocity; a discrete spatal
Fourier transform is then used to decompose the eight velocity measurements into spatial
harmonics (only modes 1, 2, and 3 were examined here); a separate control law is then
implemented on each spatial harmonic; and then an inverse discrete Fourier transform on the
spatial harmonics is taken to yield individual blade posidon commands to each of the 12 control
vane position control systems.

A simple proportional control law was implemented in these experiments. For each spadal

harmonic #, the change in control vane stagger angle, 7, is proportional to the measured change in

axial velocity, C.

16 Vvand, =2nCn 7. M)

where Z, is the complex constant of proportionality

Zy =R, &bn )
Ry, represents the gain of ths controller, while 3, is the phase angle between the measured velocity
perturbation and commanded stagger angle change for each harmonic. With this harmonic by
harmonic control scheme, B, is a spatial lead which can a@unt for both lags in the control system
and the dynamics of the compressor. The total change in vane stagger angle, &4ane, is then
simply the sum of the deflections calculated for the individual harmonics being studied (1, 2, or 3
in this case). Paduano established the optimum gain and phase for each harmonic empirically.

Here, as will be shown later, theory can be used to calculate the optimum feedback gain and phase
with results closely matching those found experimentally.

Steady State Compressor Performance

Aside from active stabilization experiments, steady state measurements were taken both to
assess the compressor operating characteristics and to establish the acrodynamic parameters
needed as input to the analytical modeling and control law design. These included measurements
of the speedline shape, the torque efficiency, and the influence of control vane stagger angle (7) on




the non-dimensional pressure rise coefficient (y). Specifically, the dy/dy values required by the
theory were derived from measurements of the steady state influence of vane stagger on
cOmpressor pressure rise, as illustrated in Fig. 4. The resultant values of dy/dyand dy/d¢ are

shown in Fig. 5. Dam in the normal unstable low flow area were taken while the compressor was

stabilized with feedback conmrol.

C Perf With Active Stabilizati

Active feedback stabilization of the first two spatial harmonics was implemented as
described above. The results using the optimum feedback gain and phase found are illustrated on
the speedline in Fig. 6. Control of the first harmonic yields a range increase of 3%, while control
of the first and second harmonics tbgﬁcthcr increase that to 8%. At this point, the speedline slope
is 0.9. The compressor torque losses continue to decrease smoothly in the actively stabilized
region. .

It is useful to examine the time history of the transient into stall as an aid in understanding
the instability evolution process. The time history of the axial velocity measured by the eight
sensors about the compressor circumference is shown in Fig. 7 for the unstabilized compressor.
Here, the smooth growth of the first spatial harmonic wave is quite apparent for the 15 rotor
revolutions illustrated before stall (it is highlighted by the parallel dotted lines in the figure). When
the first spatial harmonic is actvely suppressed (Fig. 8), the stall inception process is different in
that it occurs at a lower mass flow and that the low amplitude waves growing prior to stall exhibit
twice the frequency, as can be readily seen by comparing Figs. 7 and 8. It is the second spatial
harmonic which goes unstable and triggers the rotating stall when the first harmonic is stabilized.

A useful tool for examining the wave growth is a discrete spatial Fourier transform of the
axial velocities measured about the compressor annulus at each instant in time. This yields a
complex Fourier coefficient for each spatial harmonic, the magnitude of which represents the
instantaneous strength of that spatial wave, and the phase of which is a measure of the

instantaneous angular position of the wave. Thus, a straight line phase history indicates that the




wave is travelling at constant angular velocity. This behavior can be seen in Fig. 9, which presents
the spatial Fourier coefficients calculated from the unstabilized data of Fig. 7. The first harmonic
position does change at a constant rate for some 15 revolutions before stall. (Note that the
compressor is unwrapped here so that 2x radians represents one revolution of the wave, 41
radians two revolutions, and so on.) Examination of the magnitudes of the first three spatial
harmonics in Fig. 9 shows that the first is the strongest and that it grows to large amplitude before
the second and third do. This uncontrolled compressor has a single lobed stall (primarily first
harmonic) at this mass flow. When the first harmonic is actively stabilized, however, the Fourier
coefficient of the second harmonic is strongest prior to stall (Fig. 10). Once stall starts, though, the
first harmonic quickly dominates. Indeed, examination of the time history in Fig. 8 shows that
once the fully developed rotating stall is established, it is a single lobed stall.

A time history of the compressor under first and second harmonic control is shown in
Fig. 11 and the corresponding spatial Fourier coefficients in Fig. 12. Hérc, the instability appears
to grow from both the first and second harmonic, with the third harmonic weaker. Again, the fully r
developed stall is primarily single lobed. Although the third harmonic does not appear to play 2
dominant role in Fig. 12, simultaneous stabilization of the first three harmonics was implemented
with results shown in Figs. 13 and 14. No increase in stable flow range is achieved over control of
only the first and second harmonics. The relative rolés played by the three spatial harmonics is not
clear from the data in Fig. 14, although the first harmonic does appear to grow first.

We have been discussing the temporal structure of the instability onset; the spatial structure
is of interest as well since that can be used to connect the harmonic representation with a detailed
compressor aerodynamics view of rotating stall. Axial velocity measurements were taken at three
spanwise stations at each of four circumferential positions between each of the three rotor and
stator blade rows, as indicated in Fig. 2, in order to elucidate the 3-D structure of the flow field.
The axial velocity data was transformed into spatial harmonics and then the power spectral density
of each harmonic was calculated over an interval prior to stall as a measure of the wave strength at

that time. The axial and spanwise variation in the strength of the first harmonic wave taken prior to
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stall of the unstabilized compressor is shown in Fig. 15. Upstream, the first harmonic is strongest
at midspan (the same is true for the second and third harmonics when the first is stabilized).
Behind the first rotor, the signal is strongest at the tip. The decay in wave strength between the
upstream measurement station used for control and the first rotor is consistent for both the first
and second harmonics so that the first rotor will be considered the compressor face in the
subsequent modelling.

We have now presented experirmental data showing that a low speed multistage axial
compressor can be actively stabilized and illuminating the stall inception processing in this
machine. We will now use this data as an aid in refining an analytical model of instability
inception and show both how thxs tlnbdcl can quantitatively predict many details of stall inception

and how the model can be used to design an active control system.

MODELING

The two-dimensional, incompressible theory that has been formulated by Moore and
Greizer to describe rotating stall implies that, at the inception of the instability, small amplitude
traveling waves dc\}clop in the compressor annulus, grow in magnitude, and ¢ventually develop
into rotating stall cells, In this analysis of the instability inception, an arbitrary axial velocity
disturbance is decomposed into its Fourier spatial harmonics which can then be analyzed‘
independently, since the equations describing the evolution of the instability are linear. If the
compressor is assumed to operate in a quasi-steady manner, i.c. prcssuré riseisa func.:n'-on of flow
coefficient only, this model predicts that all the spatial harmonics of the flow coefficient
perturbation become unstable at the operating point where the total-to-static pressure rise
characteristic (yr'vs. ¢) becomes positively sloped. Disturbances are damped where the
characteristic is negatively sloped, and amplified where the characteristic s positively sloped, with
the growth or decay rate of the ﬁcx*mrbation being determined by the magnitude of the _slopc.

Contrary to the assumptions of the above model, airfoils do not respond instantaneously to

changes of incidence, and it has been observed in experiments (Nagano et al,, 1971; Mazzawy,
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1977) that the pressure rise across a compressor does not respond instantaneously to variations in
flow coefficient. As will be shown, this finite response time of the compressor pressure rise has a
stabilizing effect on flow perturbations, stabilizing higher harmonics to a greater extent than lower
ones. When the quasi-steady assumpton in the model is relaxed, and allowance is made for finite
blade-passage flow response times, the spatial harmonics become unstable sequentially, with
higher harmonics becoming unstable at larger positive slopes of the compressor total-to-static
pressure-rise characteristic (i.c. lower flow coefficients). This behavior has been observed in
experiments on both the three-stage compressor being considered, and previous experiments on a
single-stage compressor (Paduano, 1991; Paduano et al., 1991).

The sequential destabilization of higher spatial harmonics of flow coefficient disturbances
has beneficial implications for acdve control. By controlling only the first spatial harmonic of the
disturbance, an increase in stable operating range can be obtained, down to the flow coefficient at
which the second spatial harmonic of the disturbance becomes unstable. By controlling both the
first and second spatial harmonics beyond this flow coefficient, the stable operating range can then
be extended to the operating point where the third spatial harmonic becomes unstable. Using this
control approach, the maximum range extension possible as predicted by the model is therefore
- dependent on the number of spatial harmonics of the disturbance that one is able to control, giving
the designer the freedom to trade complexity (number of harmonics controlled) for stable range.
Indeed, it is just this behavior that was found in thc'cxperimcnt. In the following sections, the

model is extended to include the finite response time and the results are compared to experimental

data.

ACCOUNTING FOR BLADE ROW PRESSURE LOSSES,
DEVIATION AND BLOCKAGE

The peaked shape (Fig. 6) of a compressor total-to-static pressure rise characteristic, s a
consequence of viscous effects — stagnation pressure losses, deviation, and blockage — which
increase as the flow coefficient, ¢ is reduced. Lower flow coefficients give rise to larger angles of

attack on the compressor blading, which lead to stronger adverse pressure gradients within the
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blade passages. These adverse pressure gradients produce undesirable flow fields both in the tip
clearance region (e.g. large dp vortices) and within the blade passages (e.g. separated boundary
layers). Viscous dissipation and mixing within these flow fields cause the associated high
stagnation pressure losses, while the displacement effects give rise to deviaton and blockage.
When the overall flow within the compressor is unsteady, the blade passage flows do not respond
instantaneously to fluctuations in axial velocity and blade inlet angle.

To determine the sensitivity of the compressor unsteady response to various phenomena, it
is useful to quantify, where possible, the effect of each on the measured pressure rise. In an ideal
compressor in which the effects of losses, deviation and blockage are absent, the pressure rise

would increase monotonically with a decrease in flow coefficient. The total-to-static pressure rise

of such an ideal compressor is given by the Euler compressor equation,

n 1 2
&

i=]
where n is the number of compressor stages, a; and f; the stator and rotor exit angles of the i'th
stage, and ¢ the exit angle from the last stator. The difference between this ideal characteristic and
the measured one ()} shown in Fig. 16 can be attributed to the effects of losses, blockage, and

deviation outlined above. When this pressure loss becomes greater than the increase in ideal

pressure rise, the measured pressure rise characteristc, ¥, peaks over and becomes positively

sloped.

When the compressor operates isentropically, all of the shaft work input goes into
increasing the stagnation pressure of the working fluid. The isentropic stagnation pressure rise

across the compressor can therefore be caiculated from the shaft torque as:

(Pe— Py )isgmrapx'c ¥ ¢2
= = ——— 4
Visen pU? ¢ 2cos‘c, @

where y; is the torque goefﬁciem (measured in this case). The isentropic pressure rise

characteristic of this three-stage compressor, Wisen, is also shown in Fig. 16. The contribution of
dissipation to pressure losses is then given by the difference between the isentropic pressure rise
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characteristic and the measured one, while the contribution of other effects (deviation and
blockage) is given by the difference between the ideal and isenmopic characteristics. For the
purposes of this study, it is convenient to consider the measured pressure rise as being made up of
the difference between the ideal pressure rise and the sum of steady pressure losses due to
blockage and deviation, Ly s (i.¢. lack of tuming), and losses due to dissipation, L s (i.e. entropy
production).

It is apparent from Fig. 16 that, for the three-stage compressor being considered here, total
pressure losses (entropy), Ly ss, increase significantly with a reduction in flow coefficient, whereas
the effects of blockage and deviation, Ly s5, vary little over the operating range that we are
interested in, i.e. past the peak of the measured pressure rise characteristic. The influence of total
pressure losses on compressor transient behavior are easier to model than the other non-ideal
phenomena since the effects of total pressure losses are mostly confined to individual blade rows
(mainly the pressure rise across the blade row is affected); on the othér hand, the influence of
deviation is not confined to a single blade row. Rather, the deviadon of one blade row alters the
angle of attack on the following row, changing the pressure rise it produces. However, since the
effects of deviation and blockage appear to vary little with flow coefficient over the flow range of

interest (i.e. Ly is flat in Fig. 16), these phenomena should not significantly affect the

compressor transient response. Although we have not studied the generality of this observation to

other compressors, we will exploit it here to simplify the analytical modeling. Thus, only the

effects of total pressure losses on compressor transient response will be considered.

MODELING COMPRESSOR TRANSIENT BEHAVIOR

To start, it is useful to consider an instantaneous reduction in flow coefficient through the
compressor (Fig. 17). Since the fluid dynamic phenomena (such as boundary layers) causing
non-ideal compressor behavior are parabolic in nature, they do not adjust instantaneously to their
new structure associated wuh the increased angle of attack on the compressor blading which

occurs when the flow coefficient is reduced. Rather, the change in structure evolves over a period
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which is dependent on the convectnon time of the bulk fluid through the blade passage. Thus, the
associated pressure losses will evolve temporally as well. Emmons et al. (1955) suggesied

modeling the evoludon of losses with a first order differental equagon:

ALy snsion)

G Urgnsient) . - 5
oss dr = &'quan ~steady 5L!rwwnl (3)
where 11,5, represents the time constant charactenzing the evoluton. For the step reducnon in ¢
considered here, the change in stagnation pressure 10ss &pannens 15 then given by:

SLuransient = Olquasi-steady (1 et f/no.u)) (6)

Since the stagnation pressure losses reflect the tme lags associated with the flow within the
compressor blade passages, the compressor pressure rise must as well. To illuszate this point,
consider again an instantaneous reduction in flow coefficient when the compressor is operating on
a positive sloped portion of the charactenstc (Fig. 17). Immediately after the reducgon in flow
coefficient, the stagnaton pressure loss is at its initial value, since a finite time is needed for the
loss to evolve to its final value. Since the pressure rise across the compressor is made up of the

difference between the isentropic value and the loss, the pressure rise ininally follows a curve

parallel to the isentropic one as shown in Fig. 17. It then decreases to its final value corresponding
to the lower flow coefficient after a finite ime characterized by the ume constant fj,¢,. Thus, when
the flow in the compressor changes abruptly, the slope of the pressure rise characterisac deviates
from its quasi-steady value. In particular, in the operating range of the compressor where the
steady characteristic is positively sloped, the effective transient slope can be negative when the tirme
constant associated with the flow unsteadiness is low enough, ie. if the reduced frequency of the
unsteadiness is high. This has important implications for the initiation of rotating stall since the
stability of disturbances is dependent on the eifective slope of the pressure rise characteristc.

apecifically, inclusion of the time lag can increase compressor stability.

COMPRESSOR MODELING

The analytical model used in this study is an extension to the one described in Moore
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(1984), Hymes and Greitzer (1987), and Epstein, Ffowces Williams, and Greiwzer (1989). The
analysis is two-dimensional, which is appropriate since the machine under consideration has a high
hub-to-tip ratio. The inlet flow field is undistorted (uniform inlet total pressure), and the inlet and
exit ducts are assumed long, so that end effects, i.c. reflection and scantering of the disturbance
wave from the ends, are not important. In addition, the tip speed of the compressor is assumed to
be low enough for the flow field to be considered incompressible.

In the analysis an arbirary flow perwrbadon, 8¢ is assumed to be of the form:

5= 4,60, )
n=1
where
(a, —iw.)r
Sy = “A—-&—-‘L* (&)

In the above formuladon, w, r/U represents the rotaton rate of the n'th spadal harmonic non-

- dimensionalized by the rotor rotatonal speed, and a,7/U the non-dimensionalized growth rate of

the n'th spatial harmonic. When the above form of the flow coefficient perturbation is subsdruted
into the differential equations describing the dynamics of the fluid in the compression system, the
analysis yields an eigenvalue problem in 5,, with the growth and rotation rates of each spatal
harmonic determined from the solution to the eigenvalue problem. If the real part of 5, is negative,
the spatial harmonic is damped, and the corupressor operation is stable; if the real part of s, is
positive, the spatial harmonic grows exponentially, so that the compressor is unstable. Details of
the extension of the stability modeling to account for finite compressor response time can be found
in Appendix A.

An adaptation of this model to a compressor using control vanes for active control was
developed be Paduano et al. in their study of the control of rotating stall in a single stage
COMmpTessor. Thc details of the closed loop model extended to allow for finite compressor

response times are outlined in Appendix B.
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SYSTEM IDENTIFICATION OF COMPRESSOR DYNAMICS

Paduano showed that he response of compressor flow perturbadons to control vane
deflectons can be expressed in transfer function form as,

8¢, _ (iG,s+A, +iB )a, +a,,5+8,,5 +..+a,5)
8y (s—C,—iD )b, +b,y5+b,s +...+b,s") ®)

where s represents the complex frequency (growth rate and rotation speed) of the forcing functon
&7, the control vane deflection wave, and ¢ refers to the flow coefficient at the measurement
stadon. The transfer function developed from the compression system model in Appendix B can
be written in an equivalent form, hence the model parameters can be related directly to those
determined experimentally. In particular, C, corresponds to the growth rate a,, and D, to the
rotation rate ay of the n'th spatial harmonic. (-Bp/G,) and (A,/Gp) represent the growth rate and
frequency of the forced perturbation wave at which the actuation system is ineffective at producing
a flow perturbation response. (This is defined as a zero of the actuation system.) In additdon, G,
represents the effectiveness of the compression system to control vane forcing over the frequency
range. The parameters A,, By, Cp, Dy, and G, therefore completely specify the open loop behavior
of the compréssor/acruadon system. The parameters in Eq. (9) were experimentally determined
using a least squares algorithm to fit the form of the transfer function to the measured dynamic
response of the compressor. The accuracy of the theoretical model as a quandtative predictive tool

could therefore be established by comparing the experimentally determined parameters to those

predicted theoretically.

Open Loop Iden‘ification Methodal

In the development of the hydrodynamic stability model, it is assumed that the spatial
harmonics of disturbance waves are decoupled, so that a linear model could be used. This
assumption should be valid for the experimental identification studies so long as both the forcing
and response disturbances are small in amplitude. Since the compressor characteristic slope plays
an important role in the model, a unique transfer function exists at each steady-state operating point

for each spadal harmonic of the disturbance wave. In the experiment, the forced response was
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determined with the compressor operating in both the stable and normally unstable range. In the
normally unstable operating range, the compressor was operated under closed loop active control.
Under these conditions, it is the dynamic response of the combination of the compressor and the
control system that is measured, therefore it is necessary to also accurately characterize the
dynamics of the control system, so that compressor transfer can be deduced from the overall
System measured. ‘ |

The basic approach is therefore to excite the compressor with a well-chacterized
disturbance (a small amplitude sine wave deflection on the control vanes travelling about the
Circumferences at various speeds @s a simple example). In this case, on the normally stable portion
of the compressor map, a pseudo-rﬁndom binary excitation signal with a bandwidth 1.25 times the
rotor’s rotational frequency was used to excite the dynamics of the first three spatial harmonics.
Identification studies of harmonics higher than three would have required control vane forcing at a
frequency beyond the bandwidth of the actuation system. The transfer function w s then
determined from simultaneous discrete-time measurements of the conaol vane deflections, and
flow field velocity perturbations around the compressor annulus, using a spectral method. The
transfer function of each spatial harmonic resembled a second order dynamic system, which is
equivalent to a first order system with complex coefficients of the form,

_5.‘21.: iG,s-*-A,-f-iB,, (10)

oy s—C,—iD,

which indicates that the additional terms in Eq. (9) do not affect the transfer function significanty.
From the order of magnitude of the coefficients of the additional terms in the theoretical model,
one can deduce that they will not affect the shape of the transfer function significantly over the
range of forcing frequencies that was used in the experiment. Figures 18 and 19 show a least
squares fit of the transfer function of the form in Eq. (10) to the experimental data. The fidelity of
fit indicates that the form of Eq. (10) is quite appropriate for this compressor. The fit parameters
which therefore form the dynamic model of this compressor are given in Table 2.

When the spatial harmonic of interest was stabilized by closed-loop control, the transfer

functon could not be determined directly in the above manner. In this case, the parameters
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describing the open-loop performance were calculated using an instrument-variable modeling
technique adapted to compressor identification by Paduano (1991). This method required an
accurate model of the actuator dynamics, and a quantitative estimate of time delays in the feedback
system. The actuator dynamics were determined from measurernents of the response of conwrol
vane motion to the command signal. The open loop transfer function of the compressor was then
measured by superimposing a forcing signal on the vane control signal. The accuracy of the
instrument-variable method was checked continually by comparing the vane deflections with those
simulated by the actuator dynamic model. The open loop dynamic parameters of the compressor
could then be obtained from the cptrlxn}andcd forcing perturbation, the actual vane deflections, and

measurements of velocity perturbatdons upstream of the compressor. The details of the procedure

are described by Haynes (1992).

COMPARING OPEN LOOP MEASUREMENTS AND PREDICTIONS

The symbols in Fig. 20 show the growth rates and frequencies of the first thrcc’spaci‘al
harmonics of a disturbance wave determined from the experimental identification studies.
Negative values of a,;r/U represent temporal decay of a spatdal harmonic while positive values
represent exponentially growth. The experimental data shows that the spatial harmonics of the
disturbance wave become unstable sequentially as ¢ is decreased, with higher harmonics
becoming unstable at lower flow coefficients. The spacing of the neutral stability points (o, = 0)
of the spatial harmonics is important for active control of rotating stall in compressors, since it
gives an indication of the range extension that could be achieved for each additional spatial
harmonic that is controlled.

With no control, the identification data indicates that rotating stall would be triggered by
the growth of the first spatial harmonic where & = 0 at a flow coefficient of ¢ = 0.46. The time
history of spatial harmonic coefficients shown in Fig. 9 does indeed show that a coherent first
harmonic perturbation appears first here and grows in amplitude before the higher harmonics do.

Figure 20 also shows the predictions of the unmodified Moore-Greitzer model (which
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does not include the effects of finite compressor time response), that all the spatial harmonics of
the disturbance wave become unstable at the same flow coefficient, ¢ = 0.468, which is the peak
of the total-to-static pressure rise characteristic. Also, the model underpredicts the rotational
frequencies of the spatial harmonics. The model modified to include finite response times,
however, gives much better agreement with the experimental data (Fig. 21). Since the exact values
of the compressor blade row time lags needed by the model were not known a priori, a parametric
study was done to determine the effect of their variation on the resultant theoretical predicdons. In
Fig. 21, the blade row response times 7, and 7, are set equal to 1.5 times the blade passage
convection times, which gave the best agreement of the model with the experimental data. Itis
important to note that the growth and rotation rates of all three harmonic disturbances (6 quantites
in total) predicted by the model show good agreement with data when only one constant is
adjusted, the blade row time lag. Furthermore, the value required to match the data, 1.5 times the
blade passage convection time, is within the range found by Nagano et al. (1971) whose -
experiments to characterize the response time produced values of bew“/ccn 1and 1.5. This
supports the hypothesis that finite pressure rise response time is the physical mechanism causing

the sequential destablizing of the spatial harmonics of the flow coefficient perturbation.

PREDICTING CLOSED LOOP COMPRESSOR BEHAYVIOR

As was discussed above, the modified compressor stability model does a good job of
predicting the open loop dynamics of the system, implying that the compressor dynamics are
appropriately represented. This model adapted to the closed loop system should then be able to
predict both the behavior of the compressor under active control as well as the influeace of control
system design parameters on that behavior. Deails of the closed loop model are given in
Appendix B.

Figure 22 shows the boundary between stable and unstable operation of the compressor
operating under closed loop active control of the first spatial harmonic, as the phase of the control

vane deflection wave is varied relative to that of the measured velocity perturbation wave. The
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flow coefficient at which the spatial harmonic becomes unstable with no feedback control (gain, R,
=) is also shown. The operating range of the compressor is thus extended for those phases for
which the closed loop stability boundary is lower than the uncontrolled neutrally stable flow
coefficient. The control system has a destabilizing effect on the compressor where the stability
boundary is greater. The optimum feedback phase is that which gives the largest range extensiorn
and corresponds to the trough of the closed loop stability curve.

The model prediction and the experimental results in Fig. 22 agree closely. The agreement
for control of the second spatial harmonic is close as well (Fig. 23), suggesting that the model is
indeed an accurate representation of the stabilized compressor dynamics.
DISCUSSION AND SUMMARY

We have presented herein details of the closed loop control of a three-stage low speed
research comr ;essor. In addidon to being only an end unto itself, the actively stabilized
compressor is a powerful research tool for use in the understanding of compressor dynamics. In
particular, such a machine facilitates the accurate measurement of the compression system
dynamics with a combination of forced response experiments and system identification
methodology. We have found the adoption of controls formalization to be a great aid in this area
of fluid mectanics research.

Two approaches were taken to establish the compressor dynamics: (1) experimental
measurement and identification, and (2) an analytical hydrodynamic 2-D stability model of the
flow field. The experimental data was used to determine the relative importance of fluid
phenomena included in the modeling. In this case, compressor time lags due to losses proved to

be important while those stemming from deviation and blockage were not. The Moore-Greitzer
stability model when suitably modified to include these time lags accurately predicted the open
loop onset of stall as well as the behavior of the stabilized compressor. This implies that, to the
degree to which these results may now be generalized, a tool now exists for predicting the rotating

stall point in high hub-to-tip ratio compressors for which compressibility is not imponaht.
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The active stabilizadon of the first and second spatial harmonics increases the operating
range of this compressor by about 8%, stabilizing the machine up to a characteristic slope of 0.9.
Stabilization of the third harmonic does not aiter the compressor behavior. At this ime, we do not
understand the lack of effectiveness ‘of the control in increasing the operating range when the third
harmonic is stabilized. Examination of the actuator motion confirmed that actuator authority and
bandwidth limits are not reached before the rotating stall has grown to large amplitude. The
influence of effects not included in the linear model have not been examined in detail.

Since control of the first two harmonics confirms quite closely to theory, Hendricks and
Gysling (1992) have used this modeling approach to examine the performance of alternate
actuators in controlling this compressor. They found that a circumferential array of jcts‘ at the
compressor inlet in place of the control vanes should be particularly effective, stabilizing the
compressor down to a characteristic slope of 4, over four times that achievable with control vanes,
with a concomitant increase in stable flow range. Work is proceeding on an experimental |
verification of this modeling.

Overall, we believe that the good agreement between the experiment and theory preseated
herein indicates that it is now possible to assess analytically the influence of active compressor
stabilization on the dynamics of the type of machine tested. Work is ongoing to extend the
modeling and experiment to include low hub-to-tip ratio compressors (2 3-D stability model), to

account for the effects of compressibility, and to treat the influence of inlet distortion on actively

stabilized compressors.
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APPENDIX A
COMPRESSOR STABILITY MODEL INCLUDING TRANSIENT BEHAVIOR
In this model, the pressure rise across a compressor is modified by the pressure difference
required to overcome the inertia of the fluid within the blade channels, when the flow within the
compressor is unsteady. If one assumes that the flow within the blade passages is one

dimensional, the unsteady pressure rise across the compressor can be vritten as (Moore, 1984;

Hynes and Greitzer, 1987):
P,-P, a9 urdé
SY—A—— =
2 Ve T U (A1)
where:

V= Visen —L; =L (A2)
Visen is the isentropic stagnation pressure rise across the compressor and L, and Ly are the rotor
and stator stagnation pressure losses. The inertia of the fluid in the rotors and in the compressor
are represented by A and ut respectively. At the initation of rotating stall, the flow coefficient

through the compressor is modified by a small perturbation ¢ so that:

¢ =$+5¢ Visen = Wisen + dVi;en 5¢

de
P¢=Fe+5Pe Ls=zs+5Ls ‘ (A3)
Py =Py + 8Py L =L +dL,

The compressor pressure rise perturbation equation is therefore:

8Py~ 8Py _ dWien s _sr sy 3 9(59)_pr 3(86) »
T - ap AT o (Ad)

Visen = Wss + Ly ss + Ly o5 (A5)

where y/;; is the steady, axisymmetric total-to-static pressure rise including losses, and Ly s5 and

L, ss the steady stator and rotor stagnation pressure losses respectively. The stator transient
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stagnation pressure loss perturbation, dLs, is given by the differental equation:

3oLy _ oL
2 (&‘) =5 - (A6)

The rotor unsteady stagnation pressure loss, &y, is calculated in a reference frame rotating with the

rotor:

ot r dv d¢

In this analysis, a general perturbation in flow coefficient of the form:

fr(a(&.,) N U9(5L,)) _ 9 8¢ - &L, (A7)

5¢ = ZAne(a,,-—im,,)zeim? (A8)

n=1 .
is considered. Each spatial harmonic of the perturbation can be considered separately, so only the

n'th spatial harmonic:

5¢ = A, o(Cn—i®n )t £ind (A9)

will therefore be examined.
" The variables describing the evolution of the perturbation can be non-dimensionalized as

follows:
=, R, e A10)

where U is the rotor speed and r is the average radius of the compressor annulus, so that the

equations describing the perturbation become:

0P, ~ 0P _Wisen s, sr _sr _ 4 0(08)  9(5¢) ,
—d(OL;) _ PLsgs o,

w5t §¢ — 8L, (A12)
—(9(éL,) 5(5Lr)) _OLrss o, -

1.',.( % + 55 )" "3 ¢ ~ oL, (A13)

59 = Ae™ ¢in? (A14)
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The upstream stagnation and downstream static pressure perturbations are given by the

expressions (Epstein, Ffowcs Williams, Greitzer, 1989):

5Py _ _13(50)
F i (A13)
and
&, _ 1 a59)
_ Al
r R (A16)

Substitution of Egs. (A15), (A16) and (A14) into Egs. (A11)-(A13) produces a generalized,

complex eigenvalue problem in Sp:

(A—s,B)% =0 (A17)
where:
(1(dWigen_,5) -1 1 )
f\ d¢ ¢
A= 1 dhs s 1 0 (A18)
7, do 7,
-—1-~—-—-d[?’” 0 —-(in+i-)
\ % 4d¢ %))
(1 0 0
B=|0 1 0 (A19)
0 0 1
o9
&% =| 8L, (A20)
oL,
C.=(-2-+p) (A21)
il
and
(A22)

Visen = Wss + Lsss + Lrss -
The solution to the eigenvalue problem yields the growth and rotation rates of the
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perturbadon wave. If the real part of s, is negative, the disturbance is damped, representing stable
operation of the compressor. If the real part of s,: is positve, the disturbance grows
exponentially, representing unstable operation. For the uncontrolled compressor the growth rate of
the perturbation is determined by the slope of the total-to-static pressure rise characteristic.

We must now fit this model to our data. The steady state compressor slope, dy;/d¢ is
determined from a polynomial fit to the measured pressure rise data. The total pressure loss
across the compressor is estimated from the difference between the isentropic pressure rise
characteristic and the measured one. A polynomial fit to this estimate is then used to determine the
slopes of the rotor and stator loss curves, dL, ss/d¢ and dLg s5/d¢. For the particular build of the

three stage compressor that was considered (75% reaction), it was assurned that 75% of the steady

total pressure losses occurred across the rotors, and 25% across the stators. The time constants 7,
and 7, were related to the convection time of the bulk flow through the blade channels. Since the
values of these constants was not measured, a parametric study was done by varying these
constants about the blade passage convection time. The best agreement with the experimental data

was obtained with the time constants set to 1.5 times the blade passage convection time.
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APPENDIX B
COMPRESSOR STABILITY MODEL INCLUDING ACTIVE CONTROL

In an actively controlled compressor, the relation between pressure and velocity

perturbations can be manipulated by the actuator. Analysis of the movable inlet guide vane

actuator involves determining relations between the actuation and perturbations in velocity and

pressure introduced into the flow field. The actuator is modeled using quasi-steady actuator disk

theory. A detailed model of the compressor with control vane control is given by Paduano (1991)

and Paduano et al. (1991), and is outlined here, with modifications to account for finite compressor

response times, With control vanes and quasi-steady compressor response the compressor

perturbation equation can be written as:

where,
8P, _ 1 9(66,)
pU?* | of
and
with

8¢, = ¢y — ‘."‘pﬂigvg'y
and

Py __1a4)
3(7% B

Here &y represents an angular displacement of the inlet guide vanes from their mean

(B1)

(B2)

(B3)

®4)

(B5)

position. When the quasi-steady assumption is relaxed, and the finite compressor response times

are modeled, the compressor perturbation equation can be written as:




o(8¢n) d{ 50 .
s [ 2 (B6
di

5P€ - 5?,1 - aW{;gn 603 + aW:’-‘gn 57"5L: - 5[__ - A ’ =
3.’, 1 ol

pU* a9

where the transient losses, &, and &L, are now modeled by the following equatons,

— (8L} _ OLsgs oLy sy o R
TJ' a; - a¢ 6% + ay 67 5L}' (B 7}
— ( 3(8L,) 8(5L,.)) _ 9Ly Oy ss o _ -
1,( p + 75 = o 8¢, + > &y~ 8L, (BS)

The above system of equations can be wrirtten as 2 transfer funcuon berween the flow perturbadon

at the measurement location upstream of the IGV’s, I, ., and the control vane deflecton &7,

1 dWisen _ 8[,,_5:{/_3}*” alz_ﬁjajv' ~ ing; ¢5(....+~—5——u’ M \f‘;’\%
6¢Lhw =€-—}niihw i 0+ {\ 9y 1+57, I+ :”'(Su”f” " bni 2 )i ’ {B9)
¥4 8 5+f'f_’_:_“,,_.l_(awﬂzc5 _OLy /0% ol /3% } ‘
§ L\ 9¢; 1457, 14 %,(s+in) J

Control is implemented by sensing the axial veloc ry perturbation, 8¢; upstream of the inlet guide
vanes. The measured signal is then processed by the conwoller which commands the congol
vanes to introduce a suitable perturbadon into the flow field. With the proportonal feedback
scheme that was employed in the experiment, the measured signal 1s modified in amplitude and
shifted spatially in phase. This is implemented analydcally as follows:

61, =2 e hw 5, (B10)

Z =Re'iva (B11)
where R is the gain in amplitude of the signal, and v, is the spatial phase shift of the commanded
signal relative to the measured signal. In practce, non-ideal behavior causes the output from the
actuator to differ from the command given by the controller. The non-ideal actuator dynamics
were determined experimentally by measuring the transfer function of the actuator motion relative
to an input command signal, and then fiming an appropriate dynamic model to the transfer

funcdon. As a simple example, assumne that the dynamics of the actuator can be modeled by a

second order differential equation,




————-!e-.-—'——'——’-_————!

9%(s P '
"'g(tf’fﬂ“’zgawa "'(é'fz")' = (Dg' (6716 - 57)

where ay, and {; are the resonant frequency and damping ratio of the actuation system. (L1 the

(B12)

experiment a higher order dynamic model was required to accurately march the measured actuator

ransfer function.) With axial velocity sensing upsoeam of the control vanes, the actuator equation

then becomes:

2 -
-—-'"x‘-‘a _(_§Y) +26,0, _______8(;5{_7) = m§ (Ze"i”l"“'&p, - 67)
faid

Equatons (B2)-(B8) and (B10)-(B12) produce an eigenvalue problem. Parameters in the analysis
are the operating flow cocfﬁcicn{(lwhich determines the slope of the pressure rise characteristc),
the gain and phase of ths feedback control Jaw, and the actuator dynamic parameters. For the
control vane actuator with velocity feedback, this system of differendal equations reduces to the

form given in (A17), where the matrices A, B, and the vector 8X are now:

r_l_(a‘,,,.z,,,_m,,) R .l_(iz_g..) o |
¢\ 9o 4 ¢ ¢\ ar
1L 1 1 s 0
= T, ¢ T 7 oy 3
A= 1 aLr.:s [ 1) 1 aL’"“ o
— 0 —in+— =T 0
T, J¢ Tr T oy
0 0 0 0 !
Ze""""‘“wg 0 0 a):‘,’ (Ze“W‘*"i"¢#igv -1 —ZgacuaJ
(1 0 0 0 " (3.4»5‘—‘&1’-)\
2 A\ 2
0100 0
B=lo 0 1 0 0 B9
0001 0
0000 1 )
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[ %02 )
8L,
&= OL, (B15)
3y
\d(87)/ )
with:
2
¢ =(H+u) (Bi6)
and
(B17)

Visen = Vs + Lsss + Lrss
There are five eigenvalues for each spatial harmonic of the disturbance, and the syster is stable

when the real part of each of the eigenvalues is negaave.
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TABLE 2
PARAMETER IDENTIFICATION DATA
1st Harmonic
Percent
Difference Re(zero)= Im(zero)=
¢ from dga Ci=oy Di=wy A B; G --B11G;  A;1G
0.488 6.0 -0.1839 0.329 -0.0709 0.00280 -0.0573 0.0489 1.238
0.462 0.4 -0.0303 0.304 -0.0650 0.00375 -0.0515 0.0728 1.262
0.432 -6.0 0.1320 0.270 -0.0463 0.00943 -0.0329 0.2865 1.406
2nd Harmonic
Percent
Difference Re(zero)= Im(zero)=
¢ from @san CG=0a; Di=ap A B; G2 -B21G; AyiGr
0.488 6.0 -0.2829 0.790 -0.1119 -0.01525 -0.0872 -0.1749 1.283
0.460 0.0 -0.1223 0.762 -0.1032 -0.00446 -0.0724  -0.0616 1.426
0.432 -6.0 0.0510 0.781 -0.0684 0.00345 -0.0431 0.0799 1.587
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MODELING FOR CONTROL OF ROTATING STALL
by
J. Paduano, L. Valavani, A_H. Epstein, EM. Greitzer and G. Guenene
Department of Aeronautics and Astronawsics, Gas Turbine Laboratory

Massachuserts Institute of Technology
Cambridge, Massachusens 02139

Abstract
An analytical model for control of rotating stall has been obtained from the basic fluid

equations describing the process atinception. The model describes rotating stall as a traveling
wave packet, sensed -- in spatial components - via the Fourier synthesis of measurements
obtained from a circumferential an:;y of evenly distributed sensors (hot wires) upstream of the
compressor. A set of "wiggly" inlet guide vanes (IGV's) equally spac#d around the compressor
annulus constitute the "forced” part of the model. Control is effected by launching waves at
appropriate magnitude and phase, synthesized by spatial Fourier synthesis from individual IGV
deflections. The effect of the IGV motion on the unsteady fluid process was quantified via
identification experiments carried out on a low speed, single-stage axial research compressor.
These experiments served to validate the theoretical model and refine key parameters in it. Further
validation of the model was provided by the successful implementation of a simple proportional
control law, using a combination of first and second harmonic feedback; this resulted in a 20%
reduction of stalling mass flow, at essentially the same pressure rise.




>
r

l_%i € v =<
e
o)

AR

o
o0
~N

TS

Nomenclature

inlet guide vane

exit static pressure

inlet total pressure evaluated at steady state operatng point
Ps2 - Py

flow coefficient Cx / U

axial velocity

wheel speed

fluid inertia parameters inside machine
radius of machine

fluid densirty

pressure rise characteristic Ap / pu?

slope of non dimensional pressure rise characteristic

nsh spatial harmonic of corresponding variable

perturbation quantity
neh spatial cosine and sine functions of flow coefficient perturbation

. rotating stall speed (differs with each spatial harmonic)

circumferential angle ranging from 0 to 2%

circumferential distribution of IGV deflection, degrees

nrh spatial harmonic of control action, - &y®Y

n-spatial cosine and sine components of control action
transfer function between ¥y (s) and Py (s)

transfer function between un;(s) , Xa1(8)

transfer function between uqa(s) , Xn2(s)

nzh spatial cosine and sine coefficients of the external input
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Introduction

The performance of compression systems can be considerably limited by multi-mode
instabilities that variously arise in both axial and centrifugal compressors. These are surge and
rotating stall. Surge is essentially a one-dimensional, mass flow disturbance encompassing the
entire pumping system -- compressor, ducting, plenum, and thrortle. It causes the mass flow
through the machine to fluctuate, generally with inevitable flow reversal and performance
degradation. Rotating stall is a localized disturbance that starts as small velocity perturbations at a
particular sector 6t‘ the compressor annulus and propagates circumferentially, pervading the entre
annulus. In many situations, the velocity perturbations grow exponentially in the inidal stages untl
a nonlinear traveling wave with the speed of rotating stall develops around the annulus (Fig. 1).

These two phenomena can be viewed, in a unified framework, as eigenmodes of the
compression system with surge constituting the zeroth order mode and rotating stall representing the
higher order modes [1], [2]. This is described in the papers by Moore [7] and by Moore and
Greitzer (8] who showed how these two phenomena are linked. Their theoretical work was
corroborated later by experimental evidence [10], [11].

Fully developed, surge and rotating stall exhibit their nonlinear nature by causing large
amplitude transitions between compressor operating points, from regions of high to extremely low
efficiency and, sometimes, unrecoverable conditions. To avoid such events, design engineers
have traditionally allowed ample surge margins to keep engine operation away from the unstable
region. This, howcver, can compromise performance since the region near the stability region is
of highest achievable performance: high pressure rise/low mass flow operating conditions.

Previous anempts at active control of surge consisted primarily of largely empirical, open
loop strategies, with limited success. A systematic feedback approach, even for the one-
dimensional surge disturbance, was not reported in the literature until recently. On the other hand,
attempts at controiling rotating stall, which is the focus of this paper, have been considerably
fewer, in both open-loop [16] and feedback configurations. This can be attributed to the fact that
rotating stall is at least two-dimensional in nature, with spatial and time components and, therefore,
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considerably more difficult to control. In addition, from the control theoretic point of view, an
appropriately defined model for control of rotating stall has not been available, even though more
sophisticated fluid model descriptions, along with experimental observations, have existed in the
literature {18], {19].

In this paper, which is intended for control audiences, we derive an analytical state-space
model for control of rotating stall, validate it, and further refine its key parameters via identification
experiments on a low speed, single-stage research compressor, This is the first conmol theoretc
model obtained for rotating stall and is the main focus of the present paper. The derived model
structure is further validated by a successful first attempt at feedback control using a simple
proportional (state feedback) strategy.

In the following sections, we describe the analytical derivation of the model and the open-
loop identification procedures underlying its structure. We also briefly discuss the closed loop
control strategy that has resulted in moving the stall point to 20% lower mass flow. A detailed
description of the overall experiment, as well as the accompanying implementation/hardware
issues, is given in [20], which is aimed for the gas turbine community. {20] focuses on the
exposition of experimental and fluid process aspects without any discussion on the dynamic mode!
per se, or any identification and structure model validation details. Such information is deferred to
the discussion in the present paper. Ina following paper [24], we discuss the complete process
identification, with special emphasis on closed-loop algorithms that can accurately identify the
process characteristics beyond its natural stability point. In [24), a new closed-loop identification

algorithm is proposed, which is tested experimentally, both directly, in terms of identified process
characteristics, as well as indirectly, by designing more accurate feedback control laws.

The Finid Process Madel - A Control Theoretic Perspective

In this section we briefly outline the fluid dynamic description of the rotating stall process
which we assume to be the mature state of the phenomenon whose linear (perturbation) behavior is
described. We start with the basic partial differential equation capturing the physics of the process
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and derive from it an analytical, finite dimensional, model amenable to conzol. Understanding and
interpreting the process from a control theoretic perspective is essendal in controlling itin a
systematic fashion. While, normally, 2 partial differential equation form would imply an infinite
dimensional mode! for control, in what follows we describe how an accurate ODE model was
obtained, based on understanding of the fluid process and judicious utilization of control theoretic

and signal processing tools.

The Physical P Without C l
We start with the basic partial differential equation as derived in [8], which represents the
local perturbation in pressure rise across the compressor, at stall inception, and convertitinto a

canonical wave operator form. The equation is given by:

Bap _ (Y |, ,389 _m 3¢
pUz”(aq:)&p A (1)

where (9y/09) is the slope of the non-dimensional compressor pressure rise characteristic y =
(Ap/pU2), where Ap is defined as exit static pressure Ps2 minus inlet total pressure Pt evaluated
at the steady-state operating point, and @ is the flow coefficient C,/U with C, the axial velocity.
Positive numbers A and y represent the inertia of the fluid inside the machine that has mean radius
r; U is the wheel speed, p is the fluid density.

A general perturbation is represented as a Fourier series and it is convenient to write the

functions in equation (1) in terms of their spatial Fourier coefficients:

- jn@+ ~ |
8?‘[‘1 = ZPTI eju 1/1' = Ep-nne . ,/r. x<0 (23)

n an

- jne -
oPsy = Psae
n

afx/r

. ZSM' . x>0 (2b)

n




n n

x/r ) Z‘;’n‘ :/r‘

n

x<0 2¢)

- jn@ +
5¢=Z¢c
n

where x is the distance from compressor face and the definitions of ;’T,n ' -};52,, . ;n , are obvious

from equations (2a-2c).
In the upstream region, the axial momentum equation can be written as (an unsteady

Bernoulli type) equation of the form:

) 3 &Py
pU%(&‘ +§; =0 3)

where 8¢, is the upstream flow coefficient. Using equation (2a) in (3), we obtain, for the nth

spatial harmonic of the perturbation
- U "t
puUr 39y @

Prip=- l“l x

Next, using continuity (momentum) and the condition of constant exit angle (axial), the

pressure gradient at compressor exit can be related to the velocity perturbations by

3 (8P 3 5oy )
< =-poU —
ax P %

and 8¢, is the downstream flow coefficient of the perturbation. By continuity at compressor face
and given the assumption of incompressibility, 53¢, = 5¢; = 3¢; 8¢ is as in equations (1) and (2¢);
also, x = 0 at compressor face. Using equation (2b) in (5), we get:

= pUr d B9y) =pUr 3 (%) ©®
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Next, rewriting the RHS of (1) in terms of the spatial Fourier expansion for 8¢ and taking the nth

coefficient we get, in conjunction with equaton (7), the following:

a,) a3 6oy .
— A— =W’
x 30 V'O ®)

where ¥ = ( dv /d9) Bz[ﬁﬁ + ’%}

p

Equation (8) is the standard form of a partal differendal equation of first oracr in &3,,. with tand 6

as the independent variables.
Thus, the complete equation (8) is of the general form:
d d

[Aae+ Batf ]&p 0

and, consistent with PDE theory in any standard tex, its solution can be written as:

3¢,~ F(A8 - Bt) ™ (10)
where the functional F represents traveling waves moving in the positive 8 direction with velocity
B/A = A/B, and o = C/B. Alternatively, the nth spatial Fourier coefficient of rotating stall is indeed
a traveling wave, whose amplitude evolves as ¢* predicting growth (instability) at positive
compressor slopes y ; also, A/ is the corresponding rotating stall speed, wgs, in the positive 6
direction. Indeed, rotating stall precursors, in the form of traveling waves of increasing amplitude,
were identified long before the onset of rotating stall (about 40 rotor revolutions before stall) [18].
A typical representation of the experimental data obtained is shown in Fig. 3.

The Homogeneous State Space Model
The solution we obtained for each spatial Fourier coefficient constituting the rotating stall

process, as can be seen in equation (10), represents a general traveling waveform modulated by an
exponential. For the application at hand, given the compressor geometry, we seek specific
traveling wavefom;s which are periodic in the argument of F, i.e., 0 and time.. Thus, we can
write the mass flow perturbation for the nth harmonic as

S = RS ¢ 2 ™ [cos(n8 - tggt) + j Sin(a® ~ wpgD)] an




With this process interpretation, we next take the state variables to be the (complex) Fourier
coefficients corresponding to each spatial mode. This is key in the derivatdon of a state space

model for rotating stall. From Eqn. (11) it thus follows that, for each Fourier coefficient, the state

variables are given by:

X 2Re 86 = €™ cos(nd ~ g 1) (12)
xﬂ$m£n=cu’sm(n9~mast) a=y’'/B
' n=1,2..
Taking time derivatives of Xy, X in equation (12) and writing the resulting differential equations
in matrix form we obtain:
A VB wgs H anJ_,Ax

x'z[ %al }=[
Xn2 -Wgs V7B X2
(13)

with A the system matrix and x the state vector for each spatial mode.
In conclusion, for each spatial Fourier coefficient we can write a two-dimensional state
space model, representing the real and imaginary parts of the solution. This model represents the

evolution in time of the amplitude and phase of the corresponding modal traveling wave. As can
be seen by inspection of the harmonic form of the A matrix in equation (13), y’ determines the

stability properties of the homogeneous system. In fact, the characteristic equation is given by
' 2 '
2., ¥ VY ° =
§2-2-—s+ 82 + @2 =0 (14)

and it is Hurwitz (stable) if y’ < 0. For y’ > 0, the characteristic polynomial is unstable and for
Y’ =0, the system has zero damping. The eigenvalues - of time evolution of each harmonic - are
A2 = (¥ /B) % joops.
Defining the Inputs and Outputs -- The Complete Model
Since the state space consists of traveling wave modes, state (output) measurements will
. naturally be traveling waves. Also, control of the instability will be effected by traveling wave

inputs, consistently designed with the process charactenstics.




For sensing, a circumferential array of eight hot wire anernometers was employed, placed
midspan upstream of the compressor to measure axial velocity fluctuations. At each hot wire, the
obtained signal (measurement) constitutes, at each point in time, a linear combination of the spatial

harmonics, as captured by the Discrete Time Spatial Fourier (DTSF) formula:

ind
Cy (0 = Y A, (e (15)
n

8 angle corresponding to location
of particular sensor.

i=0,....,7 : # of hot wires

n=12,....00: spatial harmonics

Thus, at every time t, when a measurement is taken, each harmonic can be synthesized from data

of the collection of eight sensors according to the inverse Fourier formula:

K K
-jn@ i
A= 2 e s g Gy e (16)
k=0 k
where O = 2—‘*-
k=12, K

ad  K=7in the present context.!

Equation (16) represents the output equation for the corresponding state space model for each
harmonic. Obtaining each spatial Fourier coefficient as a function of time is crucial in the feedback
control process; it has also been important in identifying precursor waves to rotating stall [18].

For launching the control (traveling wave inputs), twelve wiggly inlet guide vanes (IGV's)
were positioned upstream, each independently actuated by a dc motor, which is controlled for
-Mﬁamhnalwpmmpenm. With the addition of actuation mechanisms, the partial
differential equation describing the (modulated) fluid process now has an additional (exogenous)

term, %VYL (5Y,) , that reflects the effect of active control on the fluid process.

1 1t is possible for modal content greater than K/2 (the spatial frequency) to exist in A (t). This
mfmunmwouldalmmmempuunonomnlowamd:yme mmdw:v’r‘ayvequckly
upslrumofthe (20ch4l.2],maddmon.mesenwdesmvuyweudm ahxgherﬂoweoefﬁc:ems

tali observed (20, ch. 5.6] Thus, placing the hot wires upstream of the compressor, minimizes
ahmgfromhxxherspanalmodumEqn 16).
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where dy/dY is the control input coefficient in the forced equation and &y, is the required control
acton. Both these terms are as yet unspecified and do not derive from the homogeneous process
dynamics. For our specific choice of actuation, control will be effected through deflection of the
IGV's. However, the coefficient dy/dy cannot be precisely defined, for control purposes, by a
fluids approach alone, either analytically or experimentally. Quantification of the control input gain
dy/ay will be through direct system idendfication.

At each point in time, the individual IGV deflections are determined by spatial Fouxler
decomposition of the control signal ,(5‘{,,), required to stabilize a particular spatial mode of rotating
stall. Thus, if at time t, the required 6vcrall control input to Eqn. (17) for mode n is 8y,(t), the

individual blade deflections will be determined by the inverse spatial Fourier transform:

-j6xh -j2nk/12 2nk
ST, = &y, ¢ X" = By e O = To (18)

k=0, ... K, where K is equal to 11 for actuation.2
Furthermore, if more than one mode is being controlled for rotating stall stabilization, the overall
required blade deflections will be, for each blade k at time t:

2
8T, = Z&yn(;) e 0, =2 (19)
n--l k=0..K=11
Finally, the overall control action &Y, necessary for mode n can be effected as the spatial Fourier
synthesis of the individual blade deflections according to: )
11

81,0 =k§arnk o 20)

2 See discussion in foomote on previous page.




Equations (18) - (20) clarify implementation issues but do not determine the required

overall control acton &y,. This should be the outcome of the controller design based on the state

space model. Clearly, given the nature of the process and, consequently, of the ensuing control,

&, itself can be represented, in state space form, as a traveling wave that captures the magnirude

and phase evolution of the controlling wave. Thus, the nth mode state space medel [Egn. (13)]

with control now becomes:
oy
. xg v/ Drs Xn} (37] nt 0 Tn1
X = . = + (2 1)
Xn Wes V' /B *n2 0 %) n2 Tn2

where we have dropped 3 from 57;, for notational convenience in the linear model. In additon, let
(Z)\;//&y)nl £ P1. @w/dy) , s B». Since the coefficients oy/dy cannot be accurately defined by fluid .
considerations alone, identification experiments were designed so that the entries of the control

input matrix, as well as those of the transition matrix, could be determined by essentially fitting

experimental data to the derived analytical model structure. Also, an additional term to complete

the state space description in Egn. (21) was added to represent a pure phase term corresponding to

the need fora spa;ial lag, in the Iaunéhcd control wave input, that was observed experimentally,

due to sensor, actuator, and fluid mechanics considerations. Thus, the complete model is now:

tj.._[ . v ][ 2] ‘s, [..j i & {Yj @)

According to Eqn. (22), the spatial lag has been converted to an equivalent time lag, whose value
needs to be identified. Equation (22) indicates that each mode requires the identification of five
parameters. This is undertaken in the next section.
Identification

System identification for the rotating stall process proceeded in two distinct stages. First,

nonparametric identification was carried out to determine the transf.r functions - for each harmonic
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from IGV input to sensor (hot wire) ourput, without first selecang a possible set of confined
models. The procedures emploved here determined the pansfer functions directly from the
experimental data. Next, once the rransfer functons were idennfied - in frequency domain via
Bode magnitude and phase plots - we proceeded to parameter identification by assumung a system
order consistent with the wansfer functon forms obtained in the first stage. All experiments were
carried out in the open-loop, below the narural stability point, with model soucture validanion as the
primary objective. Our results are described below.

N ‘c Idensificarion (Transfer Funcs

A schematic representaton of the overall expenimental setun for idenufication and control of
rotating stall is shown in Fig. 4. This includes the test compressor on the lower part of the figure,
as well as the signal processing and contol software blocks (left pan), along with a control
actuation loop that govems the dc servo motors. For more details, the reader is referred w [21].
As noted in the figure, a circumferential array of eight hot wire anemometers (sensors) have been
placed midspan upstream of the compressor to measure axial velocity fluctuations. Also upstream,
twelve wiggly inlet guide vanes (IGV's) have been positioned, each independently actuated by a dc
motor, which is controlled for accuracy via an inner loop compensator. The dc servo actuation
bandwidth is 80 Hz, well above the process bandwidth of about 10-14 Hz or, typically, 20%-50%
of rotor speed. The IGV's represent just one possible mode of affecting the fluid process, but

were chosen over others because they are amenable to modeling and could be actuated with off-the-

shelf hardware,
Inputs to the process are the twelve IGV blade deflections — together synthesizing the

traveling waves — at the inlet to the compressor. These deflections are represented by twelve
numbers, at twelve discrete angular locations around the compressor annulus. Deflections are
about the mean IGV angle, which in this case is zero, and can be positive or negative up to about
130 degrees; in most experiments it was limited to 15 degrees. Even spacing of the blades
around the annulus facilitates the decomposition into discrete Fourier coefficients, i.c., the twelve
blade positions can be exactly decomposed into discrete Fourier coefficients. These coefficients
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are termed the “spatial Fourier coefficients” (SFC’s), and are distinct from those in a time Fourier
decomposidon. The ~utput of the system consists of eight measurements of the local axial air
speed, taken by the anemometers around the compressor annulus. The hot wires . at the mean
radius of the compressor, approximately .6 compressor radii upstream of the IGV's, with this
upstream locaton chosen so as to reduce the likelihood of spatial aliasing. Since the rotating <tall
dynamics are non-axisymmetric perturbations to the mean flow of the compressor, all velocity
measusements are perturbations about the mean flow. Again, because of even spacing, spatial
Fourier coefficients of the measurements are directly obtained.

The model of equation (22) can next be written in transfer function form as follows:

[xnlcs>]=[ Gp(s) -Gp(9) }[Umm]

Xn2(s) G () G, (5) [LUnas) 23

where ug) = Re uy; upp = Imug; up(t) = A 8- ang Upi(s), Upy(s) are the Laplace transforms
of Uy, Uy, respectively. The inpur ug(t) is realized as a spatial sine wave in the blade deflection
angles, of magnitude A, rotating around the annilus at a frequency @. Thus, for a first mode
excitation [u,(t)] there would be only one blade with a deflection of +A degrees at any one time
and, at a later time, a different blade around the annulus would have a deflection +A.

| Equation (23) represents a two-input two-output system. However, it can be
straightforwardly shown that a scalar transfer function Gp(s) can be calculated from the transfer

matrix elements as follows:
G,() =G, (8) +iG,y(s) - 24)
Furthermore, Gm(s) and G nz(s) can be excited separately by letting

“nx(‘) =Acos(nd-wt) and u nz(t) =0 or (25a)
unl(t) =0 and u 112(t) = A cos(nf - ax) ‘ (25b)

- and, by directly taking the @ dependence out using spatial Fourier analysis, the inputs to the model

in Eqns. (22) and (23) are represented as simple time functions:
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unl(t) =Acoswt and u 112(t) =0 or (26a)

u,=0 and u o0 = A cos a (26b)

The above inputs (26a,b) are realized as spatial sine waves whose angular location is stationary.
For example, the input in (26a) represents a sinc wave whose peak is at the fourth blade around the

compressor while in (26b) a cosine wave is represented whose peak is at the first blade around the

compressor. Thus, if the input in (26a) is used, we have:

xnl(t) =A le(jco)l cos[wt+ £ Gm(jo))]
X n2(t) =AIG nz(jm)l cosfat+ LG nz(jm)] Q7N

Following the method dcscrchd in [22, ch. 6), each output sinusoid was correlated with
the input sinusoid and its quadrature component The results of these correlations are then
combined to determine the value of the transfer function at the frequency of excitation . For

example, if the input is unl(t) =Acosat and uZn(t) = (), we compute the corresponding

correlations Ic(N) and Is(N) as follows:

Mz

}ﬁk 1 X1 (kT) cos (wkT) N——?m %le(jm)l cos{ £ Gm(i(o)]

N
K00 = 3, xui(¥T) sin kD) > 46, 60)| sint 26, Gen 28)

Combining the above results, we find

A
| Gm(im)l = 2 VI2 ) + 1sN)

£G, () = -arctan{Is(NYIc(N)] (29)

A
where Gm(jm) is the estimated transfer function.
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Figures 5-7 show typical results of the frequency analysis by the correladon method for the
rotating stall process. Both stationary and rotating sinusoids were used; in the later case the
technique must be somewhat modified but still retains the same properties. In Figure 8, Gy, (s)
and G, (s) are combined to form a derived version of G(s) for comparison with the experimental
version in Figure 7. The good agreement obtained further corroborates the validity of the argument
that identification of either Gp,(s) or G,;(s) is sufficient, since they are essentially the same
transfer functions according to the model of Eqn. (23).

| In addition to the correlation methods, spectral analysis methods were used to estimate the
same transfer fupctions Gnl(jm) orG nz(im). During this sequence of experiments, pseudo-random
binary sequences were utilized as inputs. In su;h cases the input is binary, shifting berween two

levels u; and u, in a (pseudo) random fashion, for example:
1 .

u(t) = -21- (uy +up) + 5 (ug - up) sign [R(Q) u(t-1) + w(t)] (30)
with w(t) being a computer generated white-noise process and where, by proper choices of the
filter R(q), different spectra can be realized. Using the spectral approach [22], the transfer function
estimate is the ratio between two spectral estimates as follows:

A
AN o (@
G (e"°°5=1%9—) @31)
‘bu (@g)
with the cross spectrum of the input u with the output y and the spectrum of u given respectively
by: |

T
a;.‘u (0p) = J‘ Wy - g) YN(§) 6N(§)d§ (32)
-
r
A
o @)= [Wr - 0o) [Ux®[2ds 33
-
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where WY(§ - @) is a frequency window centered at § = @y, the frequency of interest? and v

describes the window width, with a large value corresponding to a narow window. Y (%), Un(&)
correspond to the discrete Fourier transforms of y and u respectively, and GN(i) = ; Un(§) I

In our experiments, the Blackman-Tukey procedure was applied with a frequency window
of the Hamming type (see Appendix). The results of such identification experiments are shown in

Figures 9 and 10, where the inputs were chosen to be, respectvely:

U_,(s)=PRBS U ,(s)=0 and
U, (=0 U ,(s) = PBRS (34)

The asymptotic mean square error is evaluated by:

- Ov(w)

A L jol2 2 2_1
E[Gue™ - 6o 2~ M |R@? + & Wey e (35)

where Go(cjw) is the actual transfer function of the process, @V is the noise spectrum, and the
quantities M(y), W(y) are as defined in the appendix. For large ¥, M(y) decreases while W)
increases; as N — eo, the second term on the RHS in equation (35) becomes arbitrarily small. We
note that in all ﬁgﬁres 5-10, the peak - corresponding to the characteristic rotating stall frequency -
is at about 12 Hz, which represents 23% of the rotor rotation frequency in this compressor. In
conclusion, our transfer function estimation experiments using the two methods outlined above
have shown remarkable consistency and agreement. Furthermore, their shapes suggest second
order system dynamics for each mode, consistent with the structure of our analytical model.

s p Identificati
Once the frequency domain estimates of the transfer function are available, they can, in
m,beusadtoﬁndtheparametasofthemdel.Weusethesu-ucmrcofthenominalmodclanda

3 Such “weighting functions™ were concentrated around each pole/zero location, as roughly anticipated from
available experimental measurements.
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type of weighted least-squares fit to the frequency domain estimates GnK®). GnZ®) | There are
many ways that one could choose the nominal parameters to fit the frequency-domain estimare.
The method that we have employed here follows that in [23] and is computatdonally efficient, since

it only requires the solution of linear equations.

The rotating stall modes are represented by second order proper transfer functions

of the form )
baz” + byz+ b
G(z, 8g) —F—1—= (36)
" + a;z + 32
where 6 is defined as the column vector of parameters € s [a,a2bob1b2]T
for which we can write:

22G(z, ) = [2G(z, 6) G(z, 8g) 22 2 1] [-a1.2,bob; by
" [2G(z, 8) G(z, 8) 2% z 1] 6 )

Since the parameters are assumed real-valued, we define

Re {z%G(z, 8)) = [Re (2G(z. 8)) Re (G(z, 85)} Re {2%) Re 2 1] &

Im (2%G(z, 80)) = [Im (2G(z, 80)} Im (G(z, 8)) Im {2’} Im z 1] &, (38)
Thus, if we know the complex value of G(z, ) for some unknown z, we can find two linear
equations in the parameters. The frequency-domain estimation method in {23] yields an estimate of
the plant at frequencies @, for k=0, ... N/2, where N is the number (even) of distinct frequencies
over which the Discrete Fourier Transform (DFT) is taken.

Letting z sejo‘rforka-o, .. N/2, and T the sampling interval, we definean (N +2) x 5

matrix whose elements depend upon the complex values of some discrete function of frequency.
jan T
We form the matrix A { G(emk 89) } as follows:
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A {G(cjka.So)} =

L o - |
Re (¢ G’ ,00))  Re (G 8)) Re (e?°7)  Re (e

jo Cjo T iy T
Re (“MDG ™ 93y ... L. Re (¢“®7)

-

T e - o .
Im (70 G 8]  Im (G 0g)) m (2C") Im (e

j T
Im {eJ“’(er) } O

iOnmT _ j@nmT
eJ (N/2) G(c’ (N/2) 90))

| Im (¢ Y G T8 .. ... L
(39)
Similarly, the (N + 2) vector B is formed as
B 2jwpT . jooT .
Re (e %0 G(e!™° 00)1
Re {e G(e ,0
{ ( o)} (40)

jon T
B 1 G(e 0 1 = . .
{ 0 } Im {e2}leT G(e)mo'r’eo)}

2j T. j T
| Im (70 (/0D g

Thus, from Eqns. (37)-(40) we can write: |
jon T jon T
A {c™ 6g } 0, =B { 6™ 0, } 41)
Next, the parameter csﬁmatc'é is chosen as the vector that minimizes the frequency

weighted norm of the error vector

A {Gy@p} 8-B {Gy(ap} 2)

where the weighting matrix can be a diagonal matrix

Wadisg{ flag) flo) ... fog,l @y (o) ... flog,) ) 43)
“where f(w) is a frequency preference weighting function.
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The parameter estimate that minimizes the norm of the error vector WIA{GN(u)‘)]g -
B{Gn(ay)}] is given by the least squares result

8=(ATWTwA)!ATW WB (44)
The results of applying the above procedure to rotating stall are shown in Figure 11, where the
dotted line represents the five-parameter identified model, and the solid line, the corresponding
averaged experimentally obtained transfer function. Similar resuits were obtained for the second

mode, also. For this experiment the values of the five identified parameters are:
Ogs = 66.94, Ops =y’ /B = -6.58, B, = -5.01, B, = 2.04, g; = -.055 for the first mode, and Wy,
= 157.37, Ogps = -32.46, B, =-11.57, B, = -.54, g = -.048. The mass flow coefficient was .475

for both.
The five parameters were identified for both modes at various mass flow coefficients right

before stall, ranging from a mass flow coefficient of .55 down to .475, which is almost at stall; at
these extremes, Op¢ for the first mode ranged from - 36.38 to -6.58 which still represents a stable

point on the compressor speed line. Wy ranged respectively from 50.81 to 71.71 For mode 2 the
range was from -93.17 down to -32.46 for 0y and from 188.60 down to 157.37. The detailed
results are shown in Tables 1 and 2 respectively.

Predictably, the mode characteristics become less stable monotonically (0g¢) and more
oscillatory (lightly damped) - (g - with lower flow. coefficieats. However, examination of the
second mode shows that it is considerably more stable and oscillatory than the first mode. The
oscillatory behavior does not, however, exhibit a monotonic trend through various flow
coefficients. This is expected, since phase is usually not as accurately observed; in addition,
individual mode phase may be more sensitive to the presence of higher modes (spatial aliasing).
Although we have not pursued ideatification of higher order modes, it is expected that these trends
will apply to those as well. If this is truly the case, then control can be achieved with just a limited
qumbetofmodﬁ. Indeed, as will be discussed in the next section, we were able to control
rotating stall with only one or two modes.
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Another important observation supported by all the phase plots in all the figures is how
well the identified model phase agrees with that of the experimentaily determined transfer
functons. Itis remarkable that the parameter g remains essentially constant at about .06 for the
majority of flow coefficients in both modes. This further corroborates the model structure and the
intended modeling function of the parameter g. Indeed, since this is supposed to capture a spatial
phase - turned into time lag - its value should remain relatively unchanged for the range of cases
considered here. To summmarize, the above described identification experiments validate the model
structure, as represented in Eqn. (22), including the pure phase terni for the spatial lag.
The preceding identification procedures have been open loop sinc+ the operating points
were chosen at mass flows at stable -~ before stall -- regions of the compressor characteristic.
However, model validation nomdthsﬁnding, parameter identification is really needed at the
unstable post-stall points for which a controller has to be designed. Work has presently been
competed [24] on glosed-loop parameter identification experiments at stall and beyond, by
incrementally advancing to lower mass flow operating points using mformauon from the
immediately preceding stabilized ones. With the newly available information, robust compensation
can be designed which will reliably control stall well beyond the currently achieved flow coeéﬂcienr
of 0.35. In the process, it is also possible to address a number of interesting issues regarding
limits to achievable performance via active control stabilization of rotating stall. The basic question
which underlies such considerations at these more extreme conditions is which is the first barrier to
further performance improvement using active control: (i) loss of modet validity, including the
violation of linearity; or (ii) loss of control authority including, apart from the model controllability,
limits on actuation bandwidth. Surely, there are also a number of pure fluids issues to be resolved,
such as the validity of incompressibility assumption, etc. These are discussed in more detail in
- [21). The bottom line is that, with active control, the horizon of such basic investigations is

substantially expanded.
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E . tal C |_of Rotating Stall
The first attempt at controlling rotating stall experimentally utilized a simple proportional

control law of the form
‘Yn = 'kwn (45)
which, when substituted in equation (24), results in the closed loop system:
[an_._.[ W /B-kb g = kb ][Xn;] “6)
% -@ ¢ + kb, v/ /B - gb, Xn

Clearly, the system in Eqn. (46) can be stable for appropriate values of k. Since b;, b, were not
exactly known at the time this was attempted, a trial and error procedure was employed for values
of k that stabilized (46) experimentally. Also, various spatial phases were tried [as indicated in
equation (253)] untl a combination was found that stabilized the system best. The criterion was
damping ratio enhancement measured using the PSD of the closed loop process at a stable but
underdamped operating point of the compressor. A gain k of 5 deg/m/s was chosen and a spatial
phase of 60 deg was deemed best. Figure 12 shows the overall system damping behavior for
various values of phase. (For more details on this experimental procedure, the reader is referred to
[21})

With this simple proportional control law, using only first mode feedback, rotating stall
was stabilized and the stable range of compressor operation was extended. The flow coefficient at
stall was reduced by 11%, down to 0.375 from the st#lling value of 0.43, as shown in Figure13.
Closer study of the transient data indicated that the second spatial Fourier coefficient was actually
growing at stall inception when the control was on (Figure 14). This was in good agreement with
the linearity of the assumed mode! at stall inception. When the second mode was also used for
feedback, the resulting two-mode proportional control law further extended the stable range of
operation of the compressor. Stall flow coefficient was reduced by 20% to 0.35 below the natural
stall flow coefficient (Figure 15). This controller used a gain of 5 deg/mvs for both modes with a
spatial phase of 53° and 90° for the first and second modes respectively.

20




The results provide compelling qualitative support for the model structure and for the
sensing, feedback and actuation schemes used. It is qualitative because only the qualitative nature
of the system behavior - the structure of the model and not its detailed behavior - were used in the
control design.

Clearly, a dynamic model with well-defined parameters allows for the systematic design of
robust (dynamic) controller structures that could improve performance further and guarantee
stability robustness against ambient system disturbances. A rigorously designed control algorithm,
with carefully chosen suﬁcmrc and parameter values, can predictably stabilize all modes. For
example, if one looks at the exponential term potentially causing the instability, as is also reflected

in the solutions of equation (17), it is seen that the system goes unstable when the term y* /B

becomes positive. Given the definition of

2r 1 ’
p=(Z+E] @)
together with the compressor fluid inertia parameter p as defined by -
bx
n=A+ ——5—5—- bx,: stator characteristic parameter  (48)
0s“(Y )
stators

and with A, the rotor fluid inertia parameter, defined by

A= ~%71— ~ bxg: rotor characteristic parameter  (49)
Cos“(Yp)r

rotors '
one sees by substituting in Eqn. (47) the expressions of Eqns. (48), (49), that the value of B
ranges between an upper and a lower bound, as n varies from 1 to es. With this information, in
principle, a robust controller can be designed to stabilize most modes, since an upper bound on the
instability rate can be precisely defined. Knowledge of the instability range, together with the
precise definition of the five system parameters, is crucial in realizing substantial further
performance improvements with predictable overall system robustness properties.
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Conclusions

An analytical ODE model for control was developed from the generic fluids partial
differential equation describing rotating stall at inception. The model structure was validated by
extensive opén-loop identification experiments at pre-stall flow conditions. Additionally, key
model parameters were identified. Further validation of the derived model structure was provided
by the success of a simple, proportional feedback control law, whose parameters were empirically
set via successive cxﬁerimemation.

The modeling approach taken here is quite generic and, therefore, applicable to more
complex machines whose unsteady fluid disturbances need to be stabilized for performance
enhancement, i.¢. operation beyond traditionally set surge lines. In addition, the disturbances
(rotating stall) presently studied hav,c been characterized by good identifiability properties, given
the quality of the results obtained. This is promising for further investgation and understanding of
the basic fluid processes at very low flow coefficients, in conjunction with active stabilization. It is
also similarly challenging for the control modeler/theorist. '

A number of questions regarding fundamental limits to performance improvement, model
and associated assumptions validity, bandwidth and other implementation limitations, have started
being addressed. Unquestionably, the horizons for basic research have been considerably
expanded pursuant to the present work. The interdisciplinary collaboration between compressor
and control engineers has been challenging and rewarding. Our successful experience so far, apart
from its potential to effect dramatic changes in the engines industry, has opened new avenues for
basic research in both fluids and control - in arcas not attempted before, such as large scale PDE

processes, in general - which hold significant promise for future technological achievements.

s
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Parameter Identification of Compressor Dynamics
During Closed-Loop Operation
J. Paduano, L. Valavani, A.H. Epstein

Gas Turbine Laboratory, Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, Massachusetts

Abstract

A low-speed axial research compressor has been fitted with movable inlet guide
vanes 10 allow for feedback stabilization of rotating stall. A model exists whose
structure captures the input-output behavior, and stabilizaton of rotating stal is
possible using this model. Quantitative identification of the parameters in the rotating
stall model requires the ability to identify MIMO dynamics, which may be unstabie,
during closed loop operation. The 'instrumental variable’ technique is presented as the
basic approach tn this problem. The necessary extensions to the basic technique are
discussed, and tiie resulting algorithm is applied. Experimental results are presented

which verify that the methodology yields useful estimates.




Nomeaclature

numerator, denominator polynomials in discrete SISO model (13)

numerator, denominator polynomials in discrete rotating stall model (11)

polynomial whose roots coincide with the unstable roots of A(z) (32)
polynomial whose roots coincide with the stable roots of A(z) (32)

denominator coefficients of z-! in discrete models (11,13)
numerator coefficients of 2-! in discrete models (11,13)

control power parameters for continuous rotating stall model (8)

numerator, denominator polynomials in discrete SISO noise model (21)

polynomials in alternate representation of discrete noise model (31)
prediction error (15)

transfer function between '?n(s) and ¢ NONC)

transfer function between uln(s) and yln(s), )

transfer function between uln(s) and yzn(s). )

dynamics in the feedback path of closed loop system (Figure 4)
dynamics in forward path of closed loop system (Figure 4)

time index for discrete systems

term to be minimized in the log-likelihood function (30)

spatial mode number

time, seconds

external input for discrete SISO closed-loop system (30, Figure 4)

nth spatial cosine and sine coefficients of the external input (Figure 4)
input of discrete SISO model (13)

ot spatial cosine and sine coefficients of 8y, (5)

output of discrete SISO model (13)

afh spatial cosine and sine coefficients of 5¢, (5)

poles of A(z) whose magnitudes are > 1 (32)

dummy signals used in derivation of closed-loop prediction (Section 2.4)




=

Q) <RI 3IT™

<,

G
¢(6,t)

& B plelem

=

'S:ﬁMf =q O

snc

"ac

vector of instruments in AML method (29)
parameter vector in AML method (27)

ath spatial Fourier coefficient of dy, (3)

perturbation quantity

circumferential distribution of IGV deflection, degrees
additive (colored) noise random process (13, 21)
circumferentially non-uniform ¢ perturbation, (2)
compressor axial flow coefficient, (1)

annulus averaged flow coefficient, (2)

nth spatial Fourier coefficient of 8¢, (3)

regressors vector (system inputs and outputs) in I'V prediction (14)
regressors matrix for rotating stall nth mode (36)

circumferential position, radians
parameter vector in IV prediction equation (14)

stability parameter for nth mode of continuous rotating stall model (8,10)

rotation frequency for nt'h mode of continuous rotating stall model (8,10)

white noise random process (21)
vector of instruments in I'V method (16)

matrix of instruments for rotating stall nth mode (37)
regressors vector in AML method (27)

prediction or estimation
filtered version of argument

transpose
nth mode version of the argument
alternate signal which is highly correlated with the argument

ith column of matrix argument, ith element of vector argument
(i,j) element of matrix argument

Expected value
Z-transform
} inverse Z-transform
inlet guide vane

instrumental variable
refined instrumental variable
approximate maximum likelihood
noise-free

test-repeat

maximum likelihood

region of convergence
anticausal

stable, noncausal

unstable, causal

unstable, anticausal




1 Introduction

Rotating stall is a fluid mechanical phenomenon which besets axial compressors
at low flow conditions. It is characterized by a severely non-axisymmetric distribution
of axial velocity around the annulus of the compressor, taking the form of a wave or
'stall cell', which propagates in the circumferential direction at a fraction of the rotor
speed. Because the nonuniformity travels with respect to both the rotor and stator
vanes, both are subject to large amplitude unsteady velocities and, thus, loading which
can cause vibration, fatigue, and severe heating. Additionally, rotating stall in jet
engines reduces the thrust and often leads to surge, an even more severe and
debilitating instability involving the entire compression system.

The transition from normal compressor operation into rotating stall is depicted
on a typical compressor pressure rise-mass flow characteristic in Figure 1. This plot
relates the nondimensionalized flow rate - known as flow coefficient, ¢ - to the
nondimensional pressure rise. The lowest flow rate at which the compressor can
operate with axisymmetric flow is point A, the peak of the characteristic. At lower flow
coefficients, an abrupt transition occurs into rotating stall (point B). This condition
will persist until the flow is increased to point C. Thus, there exists a severe
'hysteresis’, that is, range of flow coefficients at which two stable operating conditions
exist - one of which is undesirable and often unsafe.

Traditionally, stall has been avoided by avoiding o, =ration near point A. This
solution necessitates leaving an ample 'stall margin', so that transients in flow rate and
ingestion of non-axisymmetric or otherwise disturbing flow will not drive the system to
the rotating stall operating condition. A concomitant performance penalty is paid,
because the highest pressure rise and, sometimes, the highest efficiency lie at a flow
coefficient below the minimum imposed by the stall margin requirement. It is,

therefore, of interest to reduce the minimum allowable flow coefficient, without putting




the system in danger of stall and/or surge.

This is the motivation for a number of recent papers, which describe the
phenomenology [1,2,3], fluid mechanics [4,5,6] and active control [6,7,8] of rotating
stall. In this paper, we will take the results of these papers as a starting point, giving
only a brief description of the active control results and the model presented in [7,8].

We will then present techniques for identification of the model parameters.

1.1 Active Control of Rotating Stall

Consider the schematic diagram of an axial compressor in Figure 2. It consists
of an upstream annular duct, a set of inlet guide vanes (IGVs), a compressor, a
downstream annular duct, and a throttle. Normally, flow through the compressor is
circumferentially uniform (axisymmetric), and a single non-dimensional measure of
fluid velocity determines the system state. This measure is the flow coefficient, which

is axial velocity normalized by rotor speed at the mean radius:

_ (axial velocity)
9= (rotor speed) M

Under certain conditions, however, the flow through the compressor can become
non-axisymmc&ic - that is, circumferential 'waves' of perturbation flow coefficient, 8¢,
can exist. In this case, the system can be completely characterized by two terms: the
annulus averaged flow coefficient, ¢, and' the circumferential perturbation on this
average at some axial station:

¢ =9+ 5¢(6,0), @
where @ is circumferential position and t is time. Velocity waves d¢ will tend to
propagate around the annulus in the direction of rotor rotation. The time evolution of
these waves determines the stability of the system. If they damp out with time, the
system is stable and will return to axisymmetric operation. If they grow, the system is
unstable and the waves will continue to grow until nonlinear effects take over--this

condition is known as rotating stall, and usually consists of one or more ‘stall cells'



rotating around the annulus at a fraction of the rotor speed.

Recently {7,8], active control was successfully applied to this problem in a low-
speed single-stage research compressor. The experimental setup is shown in Figure 3.
Eight hot wirc anemometers, arranged around the annulus near the compressor face,
measure the velocity perturbations. A digital computer processes these signals and
creates a feedback signal to a set of 12 movable inlet guide vanes (IGVs). The IGVs
are individually mounted on digitally-controlled high-bandwidth (80 Hz) servomotors.
This allows independent control of the IGV incidences, éyk. For the wave shapes that
are of interest in our experiment, these 12 blade deflections around the circumference
can be considered as a continuous ‘actuation wave', 6y(6,t). This actuation wave can be
commanded in response to the measured wave of perturbation axial velocity - a
feedback scheme which allows the compressor to operate axisymmetrically at values of
@ which would normally be unstable to flow perturbations 5¢(6.t).

References [6-8] present a model for the input-output dynamics »f this system,
which will be reviewed briefly in Section 1.2. Although the structure of this model
captures the experimentally observed behavior extraordinarily well, quantitative
prediction of system dynamics is not as yet possible a priori. Instead, experimental
searches and parameter identification techniques are used to aid in control system
design. Parameter identification using spectral analysis techniques allows open-loop
dynamics to be determined [7], but such methods fail during closed-loop operation. In
order to extend the operating range, it becomes necessary to identify the unstable
dynamics; this identification must necessarily be done during closed-loop operation.
Infqrrnation about unstable compressor dynamics is also of interest from a experimental
fluid mechanics point of view; such information has never before been measured.

This paper presents the results of applying an instrumental variable parameter
identification procednure to the active control research compressor during closed-loop

operation at various values of ¢ (some of which are unstable). The instrumental




variable (IV) technique [10] was chosen for this study because of its flexibility. For
instance, it can be adapted to MIMO or non-standard systems. Also, with proper
filtering, the IV estimates can be made to approach the maximum likelihood estimates.
Finally, with carcful. choice of instruments, the problems normally associated with IV
identfication during closed-loop stabilization can be alleviated. These issues will
presented in Section 2, after a brief description of the system dynamics. In Section 3,

experimental results will be shown for the active control research compressor.

1.2 Dynamic System Description

As described above, we assume that the system state can be completely
characterized by @ and the perturbation 8¢(6.t) at some axial station. @ can be fixed in
an experimental environment by a throttle downstream of the compressor. This defines
the system operating point, and ‘equilibrium’ is defined as axisymmetric flow, i.e.
6¢0=0. We are interested in the dynamics of O¢(6,t) and the stability of the
equilibrium point. We are also interested in the forced dynamics of this system, that is,
the transfer characteristics between 67(6,t) and 8¢(6.t).

References [5-7] present a linearized fluid mechanical model for this distnibuted
system. It can be shown that this model has a modal structure which allows the system
to be 'diagonalized’ as follows: If we represent the functions 8¢ and Jy in terms of

their spatial Fourier series:

860 =Y F,®-¢",
nz(

(3)
sren =y 7, -,
n=0
then the transfer characteristics between ¥ - and $n are completely decoupled, i.e.
8,9 =G (8)- T8 forn=----2,-1, 1,2, . @




This represents a tremendous simplification of the distributed dynamics and allows
standard control techniques to be applied. Furthermore, the system dynamics are
dominated by the lower modes; by feeding back only the first few modes (|n|=1,2,3),

substantial improvement in operating range can be achieved [7,8].

The system diagonalization can also be represented in terms of Fourier sine and
cosine coefficients, so that all terms in the equations are real. If we represent the input

and output functions as

BHOD =) y1,(0)-cosB) + 3" y2,(0)-sin@e),
n>0 n>0
(5)

oy(6t) = z uy n(t)-cos(ne) + 2 up n(t)-sin(nfi),
n>0 n>0

then the transfer characteristics become

Vi, _ U, IO
{ Y2, } = [Tn(s) ] . { uy } for n=1,2, {6)

where Tn(s) is skew-symmetric because of the symmetry of the annulus:
G (8) -Gy (s)

[Tn(s)] |G () G
in®) G, )

Gn(s) = G,n(s) +j-G n(s)

.
b ]

M

The structure of Gn(s) is predicted by the fluid mechanical model, and is best expressed
by giving the ODE for the system. Again, we can use either the complex Fourier

coefficient representation or the real MIMO representation:

'$n=(o+j-w,,)n-$n+(b:+j'bi)n'7n+j'8in'?n ®
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or, using the identities $n= i(yln - j ¥2,) and '}7“= dug - jug):

[S’ln] [ o 'wrs] [Yln]
S’Zn T les O nt Y2

PO AR PR 9
loe bl lwp) lee 0f Lo ) ®

These two representations each have their advantages: The complex form is compact

’n

and contains no redundant parameters. It also automatically satisfies the symmetry
conditions in the annulus. The real system, on the other hand, is standard from the
point of view of control theory - it has no complex numbers, and the two-state nature of
the system is clear (76n con;ists of a phase and a magnitude, so the system (8) isn't
strictly SISO).

The physical significance of o and s, Can be seen by substituting the

homogeneous solution to (8) into (3), for some mode n:
54(61) = e8¢0t I s )t - J(OOF O O, O 10

The second equality shows that Oy -t alters the phase of the wave, causing it to rotate;
thus sy is the 'rotating stall frequency’ fdr the nth mode. It is also clear that ot
alters the size of the rotating wave in (10); thus %, is the rotating stall stability
parameter for the nth mode.

Techniques exist to convert these continuous state-space systems to discrete
systems for the purpose of identification using digitally sampled data [9]. In this paper
we will convert freely from continuous to discrete-time systems and back without

emphasizing the details of such conversion. The discrete-time equivalent system for




the above dynamics can be written as:

[y;n } B @ [ u1n<z>} o

Y20~ A Lz, (@)

n

where

An(z) =(1+az-1 + azz-z)n, (1D
(by + baz-1)(1 + z71) (b3 + bgz—! + bsz-2)
B2 = [ (bs + bez-! +bsz-2)  (by + byz-1)(1 + z*l)L,

z is the Z-transform variable and n is the mode number. We have also added v(k) to

model disturbances. We will be concerned here with the identification of the parameter
set I

© =[a a; by by by by bs] T, n=1,2, - (12)

The discrete-time parameters G)n can subsequently be converted to the continuous

domain, giving Oy, &, by, b;, and g; in (8) and (9). We would like to accomplish this

identification task for unstable dynamics, during closed-loop stabilization. Section 2

describes our approach to this problem.

2 Instrumental Variable Method

The organization of this section is as follows: Section 2.1 reviews the basic IV
method for SISO systems. Section 2.2 outlines Young's Refined IV - Approximate
Maximum Likelihood (RIV-AML) method. Modifications to this approach necessary
to handle the closed loop case are discussed in Section 2.3, and modifications for
unstable plants are discussed in Section 2.4. Finally, a brief discussion of how the

MIMO estimation for the rotating stall system is efficiently computed appears in

Section 2.5.
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2.1 Basic IV Procedure
Consider the system
y@@) = —%%—- u(z) + v(2) (13)
where:
A@=(1+az7l +a,22+ - ),
B(z) = (b; + bzl + byz 2 + - - -),

and wv(k) represents the (possibly colored) noise corrupting the measurements. We can

build a one-step-ahead predictor for this system:

A T A

where: ’
OK) = [-y(k-1) -yk2) -~ ul® uk2) uk2) -1,
& =(ay 2 - by by by,

and the (A) indicates prediction or estimation. The prediction error can then be written
as

e(k) = y(k) - @1 (k)-6. (15)
The instrumental variable (IV) method [10] finds the value of é which will cause the

error to be uncorrelated with some chosen set of instruments
T

§) = (L1 Gak) --- 1. (16)
This condition can be written as follows:
N
&= sol{ 1%,2 ¢k)-e(k) = 0 } an
k=1

where sol{-} indicates that © is the value of © for which the equation in brackets is

satisfied. Substituting in equation (15):

N
A 1 T A
9=sol{ Nkzlg(k)[y(k)- @ (k).e) =0 } (18)

11




The philosophy of the IV approach is this: if the instruments are chosen to be related
A

to the system inputs and outputs, and © does not satisfy (17), then there is additional

information about the input-output dynamics left in the prediction error. Therefore, a

good estimate of © should extract this information, making the correlation in (17)

disappear.

The solution to (18) is
-1 N
6= R Y, LWy } (19)
k=1 )

N
Y e ®
k=1

The IV method will have good convergence and consistency properties if the following

two conditions are met;

N
¥ £()®" (k) nonsingular (20a)
k=1
N
E { D Loovw } =0 (20b)
k=1

Condition (20a) guarantees invertibility in (19), and also indicates that { is
correlated with the system dynamics, which is necessary for equation (17) to yield good
estimates. In fact, if {(k)=®(k), then (20a) is satisfied trivially and the estimate
becomes the least-squares estimate of ©.

Condition (20b) specifies that the instruments be uncorrelated with the noise, so
that colored noise will not corrupt the estimates. This condition is often not met in the
least-squares case ( {(k) = ®(k) ), hence the need for a different set of instruments [10].
Pre-filtered versions of the elements of ®(k) are usually used in this case. Ljung [10]
gives a complete description of the IV method, its convergence and consistency
properties, and methods for constructing instruments which are uncorrziated with the

noise.
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2.2 Young's Refined Instrumental Variatle - Approximate Maximum Likelihood
(RIV-AML) Technique [11]

Many filtering schemes have been proposed for constructing the instuments
{(k) in the IV procedure. Young [11} has developed a particuiarly attractive set of
pre-filters and instruments in the context of maximum likelihood estimation, for the

following noise model:
Vo) = B &) @

In this formulation, both C(z) and D(z) are monic, and &(k) is an uncorrelated sequence
with Gaussian amplitude distribution over the sample interval:

é ~ N(O’ZZ'I) §= [ &(1)’ 6(2)1 Tt g(T) ]°
In Young's approach, the input-output data is first pre-filtered, which introduces

a new set of variables:
Vi) = 520 ¥(@) § W@ =1 leu@ 5 ¥ =B ui) (22)

Young shows that, with these definitions, the maximum-likelihood estimate can be

stated as the solution of an IV problem:

N -1 N
0= g Y (wotw | | g Y Loy ]
k:l k=1
where (23)
L) = -yik-1) yik-2) -+ ufk) ufk-1) uf(c2) --- )T
and
T

Ok = [yik-1) 5c2) -+ uf) uikel) wik2) 1T,

In 6ther words, if the above defined variables and instruments are used, then @) is the
maximum likelihood estimate. This is called the refined IV, or RIV, estimate.

Of course, the polynomials A(z), B(z), C(z), and D(z) in equation (22) are not

known a priori. Initial estimates of these must be made, and the RIV method applied

13




iteratively to improve the esumates. The parameters in O consnute the updates for A
and ﬁ in such a scheme, so iteration on © s sufficient as 3 search on the maximum
likelihood estimates of A and B. C and D. on the other hand, are not estimated by the
procedure. Therefore, an esuimation algonthm for C and D must be added w0 the
iteration.

Young provides an approximate maximum likelthood approach to do exacty
that. It provides a way to esimate C and D, based on the current estimates of A, B, C,
and D. The basic philosophy is to form an error term based on the curtent estumates A
and ﬁ This error term is then considered to be the output of a dynamic system dnven
by white noise, and the dynamics are esnmr ed using a procedure sirmilar to the RIV
procedure described above. The specifics of this procedure. called approximate
maximum likelihood {(AML), are as follows;

We first take the prediction error e(k) in (15) as a measurement of vik):

wz) = y(z) - —%%—;——‘u(z)
=3 C'(z) = y(z) - ;'(z') (24,
= e{z)}.
The dynamics in (21) are then written
D(z)- W2) = C(2)- &(2). (25
A ‘one-step-ahead predictor’ for this system is
A A
VK) =07 (26)
where:
A A T
o= -vk-1) -vk-2) -~ §k-1) &(k-2) - ]
T (27}
n=[dy dy - ey ]
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To compute an approximate maximum likelihood estimate of the noise system, prefilter

as follows:

Vilk) = —— (k)

C(z)
A A (28)
By = B = 22 V)
C(z) C@)
The estimate for the noise model is then:
N -1 N
A A
1= | g Y AW | g Y Alovk) ]
k=1 k=1

where: (29)

B =[ V-1 Mk - Ben) B2y )T

The notation here has been made as similar to the I'V notation as possible, to show the
parallel between this procedure and the RIV procedure described above. Note that we
use some set of past estimates .ﬁ ﬁ c”: and 6 to allow us to best estimate ?7 which is
the updated estimate for C and D. Young gives more detail about the properties of the
estimates, and also gives a recursive algorithm for its application.

We now have an estimation procedure for C and D, which can be integrated
into the iteration for the maximum likelihood estimates of A and B. The complete
RIV-AML recursion algorithm, then, is [11]

1. Begin with initial estimates for A(z), B(z), C(z), and D(z).

Use the AML procedure (equations (24)-(29)) to update é and D.

Eall

Use the RIV procedure (equations (22)-(23)) to update A and B.
Go to 2, repeat with the new values of .2\ and B.

One purpose of the filters in equations (22) is to eliminate as much as possible
the effect of the colored noise on the outputs, Such ‘pre-whitening' attempts to insure

that yf(k) is uncorrelated with the disturbances w(k). yf(k) must be uncorrelated with
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v(k) in order to satisfy equation (20b), because yf(h) is a part of the instruments. The
filtered inputs uf(k), which make up the remainder of the instruments, must also be
uncorrelated with WKk) in order to satisfy equation (20b). During open-loop operation,
this condition is automatically sadsfied, because &(k) in equadon (21) is uncorrelated
with u(k). During closed-loop operation, however, v(k) and u(k) are correluted (this
will be shown in the next sectton). The above method must, therefore, be modified for

closed-loop identification. This is the subject of the following section.

2.3 Choice of Closed-Loop Instruments

Figure 5.3 shows the layout and notation for closed-loop operation. The system
dynamics remain as in equation (13). In addition, we introduce the external input

signal, r(k), and the following feedback law:

w(z) = Gs(2)-[ () - Gcry(2) ], (30)

where G.(z) and G,(z) are rational transfer functions representing dynamics in the
feedback and forward path. For the rotating stall controller, these dynarnics are well
defined, so here we will assume that they are known. Since y(k) is corrupted by v(k),
u(k) will now be correlated with the noise, and equation (20b) will be violated:

1(z) = Gy (1(2) - Ge- (—B—u(z) + M),

N
= E[ 2 C(k)v(k)} % 0,

k=1
because {(k) contains u(k). This is a very real problem which does not constitute a
mere theoretical technicality. In a high-gain feedback situation such as occurs during
stabilization of unstable dynamics, it renders the [V methods described so far useless.
Fortunately, these methods regain their applicability if the proper substitutions are
made to insure that the instruments fulfill equations (20).

References [12] and {13] discuss in detail the problem of closed-loop estimation,
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and the methods they describe will be used here. The idea is to replace { y(k) , utk) }
in the computation of the instruments with some { y<(k) , uc(k) } which are highly
correlated with their respective counterparts (condition (5.20a), but which are
uncorrelated with the disturbances (condition (5.20b)). The two methods used to
accomplish this are described below. In both cases, we assume r(k) is a known external
excitation.

This method, introduced in [12], achieves uncorrelated instruments by repeating
the experiment twice, with identical r(k) in both cases. The measured inputs and
outputs for the two tests -are denoted { u(k),y(k)} and { uek),y(k)}. The
procedure is to use one of these input-output pairs to compute the instruments, and the
other to compute the estimates. The RIV-AML estimation proceeds exactly as
described in Section 2.2, using { uc(k),yc(k) } to compute the instruments and
{ uk), y(k) } to compute the parameter estimates (The roles of the two input-output
pairs can be switched).

Using identical r(k) in the two tests insures high correlation between the
instruments and the measurements, and poses no particular difficulty in a digital control
environment. Also, because v(k) and we(k) are incurred at different times, they are
uncorrelated, which means that the instruments (from the first test) will be uncorrelated
with the disturbances (from the second test) even if the system is operating closed loop.
Reference [12] proves these claims, and discusses the consistency properties of the Test
Repeat (TR) method.

Both [12] and [13] discuss this method, which uses noise-free (NF) simulation
of the test to generate the instruments. In this case { us(k), yc(k) } comes from a

A
simulation, using an a priori estimate of the system dynamics (i.e. ©). wve(k) will thus
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be identically zero. The same input r(k) is then applied to the real system to get
{ u(k), y(k) }. The RIV-AML algorithm can now be applied, using { uc(k) , y<(k) } to
compute the instruments and { u(k) , y(k) } as the measurements (in this case the roles
of the two input-output pairs cannot be switched).

The same reasoning applies here as in the TR case. The noise-free instruments
will naturally be uncorrelated with the noise from the experiment (condition (20a)).
The degree of correlation between the insttuments and the measurements (condition
(20b)) will depend on the accuracy of the a priori estimate of the system dynamics, but
(except in trivial cases) some correlation will exist. Closed-loop operation changes

none of these observations. (12} and [13] discuss NF estimation more rigorously.

2.4 Modification of the RIV-AML Prefilters for Unstable Plant Dynamics

The test-repeat instrumental variable (TR/IV) and the noise-free instrumental
variable (NF/TV) methods allow identification of system dynamics during closed-loop
operation, even when the plant is unstable. Experience with these methods has
suggested, however, that the covariance of the estimates can be large for standard
choices of instruments. Therefore, we have combined the TR and NF methods with the
RIV-AML method to obtain more accurate estimates. If the open-loop plant is stable,
this presents no problem: the hybrid techniques, termed TR/RIV-AML and
NF/RIV-AML, can be synthesized without additional modifications. However, if the
open-loop plant is unstable, many of the prefilters required by the RIV-AML procedure
(equations (22) and (24)) are also unstable - they contain —A"I(E)'" which is unstable if
implemented as a causal filter.

To use the TR/RIV-AML and NF/RIV-AML procedure when the open-loop
plant is unstable, we must modify the prefiltering scheme to avoid filters which are
unstable. This problem is primarily one of understanding the prefilters in the context of

the maximum-likelihood (ML) problem, and applying them properly. To develop the
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RIV-AML method, Young ([11] first writes the log-likelihood function for the
observations y(k), and then reduces the ML problem to the minimization of the
following term:

= [Py - = W] [p—y - B
The RIV and AML prefilters are then formulated by writing dL/da; = 0, dL/db, = 0, etc.

Thus the prefilters contain -,1¢— because the log-likelihood function contains the
A

prediction error (y - —%—-u).
When the closed-loop system is stabilizing an open-loop unstable plant, we are
faced with the following problem: y(k) and u(k) are 'stable’ signals; that is, their
Z-transforms y(z) and u(z) ;:onvcrge on the unit circle (|z|] = 1). But B(:) is
unstable; that is, it is the Z-transform of a causal impulse response, and it contains
poles outside the unit circle. Given these conditions, can we compute an estimate of
y(k) based on u(k), A(z), and B(z) alone? If we can, then the prediction error can be
formulated, and the prefilters necessary for the RIV-AML procedure can be found.
To answer this question, consider our system representation (13,21):
B(z)
z

-u(z) +

(@) = B £@- 61

We can break A(z) into a polynomial whose roots are stable, times a polynomial whose
roots are unstable:

A(z)=A s(z) . Au(z), (32)
where:
As(2)=1](l-vj-z-l) [v |<l
)

A @) =T(1-p;-z1); [pif2t.
1

This factorization of A(z) allows us to rewrite (31) to reflect the possibility that the
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noise dynamics are affected by the unstable poles:

y@ =—A;%%§rzr'“<z> + -x;r%f%zr‘@“" 43

where —E— is defined such that —5~ = TEF‘ Generality is retained in this

formulation because E(z) cancels any poles of Au(z) that are not part of D(z). The

transfer function -E-— is stable if the system is stabilizable, so we can write:

y(z) = _I;%-ZT_ [ -%i—z(%;— u(z) + —%((%)— &(2) ] (34)
_ 1
i wom @]

where q(z) is bounded for |z[ = 1, because of the cur conditions on A s (stated in (32)),
—E-— (stated above), u(k) (its Z-transform converges on the unit circle), and £(k) (stated
after (21) - the important point being that £(k) is a finite-duration (windowed)
sequence). We have also specified that a feedback system is stabilizing the plant, so
that y(z) converges for |z|=1. Thus, by studying (34), onc.concludes that q(z) must

contain zeros which cancel the unstable poles of —}\——— We write this condition as
u

follows:
q(2) = A (2)- w(z) (35)

= y(2) = —ATIFT [A () W(2)].
where w(z) also converges for [z|=1. The pole-zero cancellation implied by (35) can
be derived constructively (although somewhat tediously) by wridng the closed-loop
transfer function from any external signal (such as r(z) or £(z)) to y(z).
The representation (35) can be used to motivate a filtering scheme as follows:

b . . S .
is the (two-sided) Z-transform of at least two distinct impulse responses [14}:
KuZzS

1) a causal, unstable impulse response, which we will call hc, and 2) an anticausal,
stable impulse response, which we will call hac' The Z-transform of h . converges in

the region of convergence (ROC) |z|>max(p;), while the Z-transform of h o Converges
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in the ROC |z|<min(p;) (see Figure 5). The ambiguity of the Z-transform is usually
cleared up by invoking causality: because (31) represents a causal dynamics system,

we know that the physically meaningful inverse of _A'l'(iT is hc(k), and that the
u

convolution corresponding to (35) is:
y(k) =h_ (k) * [h, (k) * w(k) ], (36)
where * indicates convolution and
- 1
h (k) = Z 1 { 7‘:(57_} ROC: |z|>max(py),

=71 .
h A(k) =Z | Au } ROC: all z.
. 1 3 .
As we have noted, h c(k) is causal, but because the poles of 'K;Ti)_ lie outside

the unit circle, h_(k) grows without bound as k — . However, it can be shown that
the causal, unstable impulse response hc(k) can be replaced by its anticausal, stable
counterpart h ac(k)’ if a pole-zero cancellation such as (35) occurs. We can write this

statement as follows:

h, &) * [hy(k) * wk) | = h (k) * [h, (k) * w(k) ] (37)
where
h, (k) = z“{ L } ROC: |z|<min(p;)
ac Kuizi 3 Pi)-

Note here that the ROC overlaps the unit circle. Computing the inverse Z-transform
over this ROC results in an impulse rcsponsé which is bounded for all k [14]. Thus we
expect that replacing h c with h ac will yield a stable (although noncausal) way to
predict y(k).
Substituting (37) into (36), we have the following equation for y(k):
y(k) = h, () * [ h, (k) * w(k) ]. (38)

Since all of the sequences in this equation are stable, their Z-transforms exist on the
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unit circle, and we can convert back to the Z-domain:

Y@ = gz ac” (A @ WD)

u
- __ B2 C(z)
T TA®@ snc'u(z)"' D(z) sncé(z)'
A
=y =—2E | ), (39)
A(z) |snc

1 e
where we denote the Z-transform of hac Y WON < to distinguish it from the

Z-transform of h - The operations between transfer functions implied by (39) are valid
for the transfer functions and signals we have defined, because they all converge on the
unit circle. The subscript 'sn;:' is used to indicate that we will use a stable, noncausal
time-domain implementation of the filter - the anticausal part coming from the unstable
poles, and the causal part coming from the stable poles. Figure S is an example of the
regions of convergence associated with —K'I(ET and the cormresponding impulse
responses.

We have shown how the transfer function between u(z) and 9(2) must be altered
when the open-loop plant is unstable. It can be shown that all of the filtering and
prediction described in Sections 2.2 can be similarly altered, without changing the
maximum-likelihood results of Young [11]. Thus, our scheme is noncausal when the

plant is unstable, and must be implemented off-line, but otherwise it proceeds as

described in Sections 2.1-2.3, with —T%'z')— replaced by -—K%-z-)— -

2.5 Application to the MIMO Rotating Stall System

The rotating stall system described in equation (11) is both multi-modal and
MIMO. The multi-modal nature of the system requires dynamics to be identified for
ecach mode number n. This identification can be done mode-by-mode, since the

dynamics are decoupled. equation (11) also shows that each mode constitutes a
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two-input two-output system. This adds complexity, but otherwise requires no
modification to the procedure. Some specifics of the rotating stall analysis will be
given, as an illustration and to demonstrate an algorithmic simplification.

The one-step-ahead predictor for the system described in equation (11) is:

A
Y1, T A
[" }k = CDn(k)-Gn

Y2,
where: (40)
T d’?n
d)n k) = T
@2 nk

[YI(k'l) y1(k-2) uyk)+uik-1) uy(k-1)+u3(k-2) -up(k) -up(k-1) -Uz(k-Z)]
yalk-1) ya(k-2) M) uyle-D+upk2) w® wk-1) wk-2))

A
©, =[ar 2 by by by by bs]
The instruments must match the dimension of the measurement matrix:
T
T
o] in] - (a9 G - En 1" an
n T 12() Gk} --- Gra(k)
Czn n
equations (17) through (28) proceed as before, with the understanding that the
summations now contain matrix multiplications rather than scalar and inner products.
equation (19) can be made more efficient computationally by breaking up the matrices
Cn(k) and <Dn(k) into their constituent vectors. The resulting solution to the IV problem

is as follows:
én ={ ngﬁd"{n + ECzn"D'gn i XS SHE DYST S ¢ “2)

where subscripts k have been suppressed.
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3 Results and Discussion

The techniques described above were used on data collected from the active
control research compressor. The pressure rise - flow coefficient characteristic for this
compressor is shown in Figure 6. Points below ¢ =0.45 are unstable, so these data
points are taken with the system operating in closed iocop. Data points in the stable
regime can also be taken in closed loop. This has been done and the pressure rise of
the compressor is essentially unaffected by the controller.

A typical closed-loop IV parameter identification experiment is conducted as
follows: First the control system is initialized and closed loop operation begins. Next
the downstream throttle is used to manually set the flow coefficient to the value at
which the test will be run. This may or may not be an open-loop unstable operating
point. The external signal [r (k) rz(k)]’}; is then applied, and measurements are made of
[uy(6) w®)]T and [y,(k) y2(0IL. The test can then be repeated for the TR method.
The complete data set is then put through the TR/RIV-AML procedure or the
NF/RIV-AML procedure described in Section 2. Estimates of A, B, C, and D are
needed to initialize these algorithms. Typically the procedure is to use estimates of A,
B, C, and D from a more stable § as initial guesses for a less stable §.

Numerical results appear in Tables I and II, for operating points between
% =0.40 and ¢ = 0.55, for n=1 and 2. Also shown for comparison in these tables are
parameter estimates obtained using the spectral estimation techniques described in (7]
(during open-loop operation above ¢ = 0.45).

A portion of a typical data set appears in Figure 7, taken at ¢ = 0.40 for a mode
number of one (n=1). The command is a band-limited pseudo-random binary signal of
magnitude 10° on each channel of the input vector [r; leI- The bandwidth of the input
is limited to @ = 1.1 (50 Hz), which is about five times the natural frequency (w,,l) of

the system. The actual IGV deflections, [u; uz];I;, are responding to both this command
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and the feedback signal, as shown in Figure 4 and in equadon (29). It is apparent from
the differences between [r; rz];{;I and [u; uz];f:l that the feedback signal is a major
part of the excitation to the system. The outputs [y, yz];l;:l are also shown in Figure 7.

An important :tep in a parameter identification procedure is model and
parameter validation. Here we present several results which indicate that the system
structure and identified parameters do in fact model the system well. The first is
shown in Figure 7, where a simulation based on the parameter estimates is used to
predict the values of U and Vi This is not the output of a one-step-ahead predictor,
which would rely on past measurements to make the prediction. Rather, it is a
simulation based solely on r,, the identified parameters for ¢ = 0.40, and the controller
and sensor dynamics. The fit is quite good, even though the simulation is noise-free,
while the experiment is not: u, and y, in the experiment are responding to excitation
noise in the compressor. Fits of this quality can be gotten regardless of whether the
data to be fit is used to get the estimates. Since the noise free simulation results are
used as the instruments in the NF/RIV-AML method, Figure 7 also serves to validate
that a high degree of correlation in fact exists between the instruments and the
measurements.

The closed-loop IV methods (TR/RIV-AML and NF/RIV-AML) are designed to
operate in a regime where the spectral csﬁﬁamﬁon procedure presented in [7] gives
poor results - that is, during -stabilization of unstable operating points. However,
closed-loop data sets can be taken at flow coefficients which are open-loop stable.
Such tests can be used to verify that closed-loop IV methods properly account for the
loop closure and still provide good estimates. Figure 8 shows the results of such a test.
A spectral estimate (based on open-loop data, using the techniques in [7]) is compared
to both a TR/RIV-AML and a NF/RIV-AML estimate (based on closed-loop data).
Good agreement between the frequency responses is obtained. This agreement is

important, because I'V-based estimates of Gn(s) not only use the estimated parameters,
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but also assume a certain model structure. Since spectral estimates are parameter-free
and assume no specific model structure, this comparison verifies both the parameter
estimates and the model structure.

Finally, the estimates of the parameters from various methods can be compared
graphically, to see if the trends with ¢ are smooth. Figure 9 shows 9 and sy as 2
function of flow coefficient, plotting spectral, TR/RIV-AML, and NF/RIV-AML results
on the same plot. Within reasonable error bands, all of the estimation methods yield
the same curves.

The data presented here are a small sample of the data taken, and are intended
only to demonstrate the practical applicability of the identification methods. A
complete presentation of the data, together with detailed discussion of the physical
significance of the parameter estimates, appears in {7}, and requires a more complete
description of rotating stall modeling. For this discussion, the relevant conclusions of
the experiments is that the methods presented here yield consistent, accurate results,
with good convergence properties and littie sensitivity to the stability of the plant.
Established prediction error methods, such as those provided in [10], have similar
properties (for the data sets tested). These methods utilize nonlinear search schemes to
minimize prediction error, instead of the least-squares type approach utilized by IV
methods. Only a thorough comparison of 'thesc two approaches would allow one to
judge their relative merits. Wellstead [16] also discusses a scheme for non-parametric
estimation of forward-path transfer functions during closed-loop operation. This
method would allow one to deduce the desired plant dynamics (using transfer-function
fits o the non-parametric estimates [7]), if sufficient care were taken to model other
contributions to the forward-path transfer function. Again, the relative merits of

Wellstead's method and the method presented here can only be determined by a

thorough comparison.
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4 Conclusions

By combining various extensions to the basic instrumental variable approach, a
scheme for estimating parameters in an unstable system operating closed-loop has been
developed. This scheme was successfully applied to a model for the distributed
dynamics of an experimental axial compressor. Thus the usefulness ¢: the procedure

and the validity of the model were both verified experimentally.
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Table I - Parameter Estimates, n=1

Spectral Estimates (from [7])

6 o s b, b, g
0.475 -6.27 67.29 -4.81 2.03 -0.055
0.500 -15.58 71.71 -5.55% 2.18 -0.061
0.525 -26.50 65.98 -5.70 1.05 -0.059
0.550 -36.37 5S50.81 -5.57 -0.84 -0.059

NF/RIV-AML Estimates

[] c Gy by b, g
0.400 5.50 52.27 -3.00 1.01 -0.029
0.425 0.61 56.99 -3.10 1.36 -0.033
0.450 -1.62 63.54 -3.56 1.49  -0.039
0.475 -4.96 66.42 -3.91 2.14  -0.044
0.500 -13.50 67.20 -4.75 2.14  -0.050
0.525 -26.27 60.36 -4.90 1.17  -0.051

TR/RIV-AML Estimates

3 o Gy b, b; B
0.400 4.95 S55.15 -3.19 0.%0 -0.036
0.425 1.26 59.86 -2.80 0.80 -0.035
0.450 -1.79 63.32 -3.69 1.50 -0.038
0.475 -4.88 68.53 -.3.97 2.03 -0.044
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Table II - Parameter Estimates, n=2

Spectral Estimates (from [7})
76 0 m{s bt bl gi

0.475 -32.46 157.37 -11.57 -0.54 -0.048
0.500 -52.38 168.26 -12.68 -1.28 -0.050
0.525 -77.44 188.59 -15.93 -2.16 -0.060
0.550 -93.17 181.28 -16.36 -3.76 -0.065

NF/RIV-AML Estimates
[) o Urs b, b; g

0.400 -4.40 137.44 -8.07 0.91 -0.038

0.425 -13.42 144.45 -9.12 0.62 -0.042
0.450 -27.63 152.40 -10.27 0.13 -0.044
0.475 -36.97 157.67 -11.24 0.01 -0.047
0.500 -49.78 159.42 -11.36 -0.22 -0.044
0.525 -75.22 152.07 -11.34 -2.16 -0.041

TR/RIV-AML Estimates
6 g Org by b gi

0.375 0.91 123.16 -7.28 0.63 -0.057
0.400 -3.42 137.27 -7.90 1.01 -0.039
0.425 -13.31 144.14 -8.91 0.60 -0.041
0.450 -24.81 151.65 -9.94 0.17 -0.043
0.475 -37.48 158.56 -11.27 -0.25 -0.047
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Figure 1 -

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

Figure 6 -

Figure 7 -

Figure 8 -

Figure 9 -

Typical pressure rise characteristic for an axial compressor

Schematic of the active.control research compressor. A- inlet duct,
B- IGVs, C- compressor, D- exit duct, E- throttie

Hardware components of the active control research compressor
Feedback loop layout and notation

Example of different impulse responses associated with the same
transfer function. The inverse Z-transform of A(z) can be computed
over any of the three regions of convergence (ROCs) shown (1, II, or
III). The impulse response in each case is the sum of the truncated
exponentials at night.

Pressure rise characteristic for the active control research compressor

Results of a typical identification run. Solid lines are experimental
data, dashed lines are predictions based on the parameter estimates

(noise-free simulation) ¢ = 0.40.

Comparison of spectal estimation results [7] and IV parameter
identification results. Solid line is an empirical transfer function
estirnate, dashed line is a transfer function derived from parameters

which were identified during closed-loop operation. ¢ = 0.475.

Parameter variations with flow coefficient. o0.-.Open-loop parameter
estimates (from [7]); *.-. TR/RIV-AML results; x.-.NF/RIV-AML
results.
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Impulse responses Z{ .._1_7}

1
Pole plot fi
¢ plot for o)
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Figure 5 - Example of different impulse responses associated with the same
transfer function. The inverse Z-transform of A(z) can be computed
over any of the three regions of convergence (ROCs) shown (I, II, or III).
The impulse response in each case is the sum of the truncated

exponentials shown at right.
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Frequency windows typically used in spectral analys:s idennficanon procedures are

characterized by the following:

n b n
fwﬁi)dﬁ =1 : f EW§xds =0 ; f:zw-,ﬁ&,;‘dg = My
- - -
x n
3 ) }' 2o ENAE = L e
ferwree=cn W5 = - W)
4 % =%
A Hamming window is defined as follows:
2 W) =%-D7(m) +%—D~y[m - 1}}%%(“) .5
Y )
sin (’r + 13} ®
where Dyw) = <
@
sin

Note: Large v gives small bias but high variance for the estimate, while the converse is true for

wide windows.
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V. EVALUATION OF ALTERNATE CONTROL APPROACHES
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Evaluation of Approaches to Active Compressor
Surge Stabilization

J. S. SIMON, L. VALAVANS, A. H. EPSTEIN and E. M. GREITZER

Gas Turbine Laboratory
Massachusetts institute of Technology
Camoridge, MA 02133

ABSTRACT

Recent work has shown that compression systems can be
actively stabilized against the instability known as surge, thereby
realizing a significant gain in sysiem mass flow range. Ideally, this
surge stabilization requires only a single sensor and a single actuator
connected by a suitable controf law. Almost all research w0 date has
been dimed at proof of concept studies of this technique, using vanous
actuators and sensor combinarons. In conmrast, the work reported
herein can be regarded as a step towards developing active contol into
a pracdcal technique. In this context, the paper presents the first
systematic definition of the influence of sensor and actuator selection
on increasing the range of swabilized compressor performance. The
results show that proper choice of sensor as well as actuator crucially
affects the ability to stabilize these systems, and that, ovenall, those
actuators which are most closely coupled to the compressor (as
opposed to the plenum or thrortie) appear most effecdve. In addition,
the source of the disturbances driving the system (for example,
unsteady compressor pressure rise or unsteady combustor heat
release) has a strong influence on control effectiveness, as would be
expected for 2 conwrols problem of this type. This paper both
delineates general methodologies for the evaluation of acuve
compressor stabilization srategies and quantifies the performance of
several approaches which might be implemensed in gas turbine
engines. ” - T

NOMENCLATURE

speed of sound

compressor flow through area

area of movable plenum wall

compressor stability parameter; B = (Ur/2a) Y9TAL)
specific heat at constnt pressure

specific heat at constant volume

energy of gas in plenum

dimensionless energy of gas in plenum; E* = G, Tp /p. V,CT,
proportional gain

equivalent length; L= | AC/ A(x) 9%

mass of gas in plenum

rmopErre

FexRmm

# at the inte

m*  dimensionless mass of gas in plenum; m® = PpV¥p /p
me  dimensionless slope of compressor speed line; me » a“i"ﬁ@
me, dimenzioniess siope of equivalent compressor :pced line
formed by compressor in series with close-coupled valve;
mee = 9/3¢ (¥, - Yo
my  dimensionless slope of throctle pressure drop versus flow
characreristic: my = 1/(901/3y )
my, dimensionless slope of equivalent throtde characteriste for
paniiel combination of throte and plenum bleed valve;
mre = 1/(3(Srs Dyliay)
Mr xmpcltcf tp Mach number, Mt = Ut/a,
p absolute pressure
Pp  plenum pressure ratio; Pp = Pp/ Ps
Q heat release rae
Q*  dimensionless heat release rate; Q* » Q/ PaUrAG T,
R gas consant for ideal gas, R = C;, - C,
s Laplace transform variable
AT?, iotal temperature rise 8Cross COMpressor
AToe dimensioniess ol temperanure rise acrots compressor,
AToc = AT /T,
t time
ty first order constant for movable plenum wall
tw  dimensionless first order lag time consant for movable
plenum wall: ¢, = tywy
u control input signal
Us  impeller tip speed
' veiucity of movable wall
v slope of valve characteristc; V = 30 / da
V*  dimensionless plenum volume; V* = V/V
V.  dimensionless commanded rate of change of plenum volume
w dirensioniess werm rehang changes in plesum volume to
plenum pressure; W = 2Pp /Mi Pa
x vector of system states
a,  bleed valve fraction open
O  close-coupled valve fraction open
oy desired (commanded) valve fraction open
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¥ rado of specific heats
Z damping ratio
= dimensionless rate of change of plenum volume;
E=A,vy /UrA
) density
T dimensionless time; © = twy
¢ flow coefficient; @ = m/ p,UrA,
] function giving dimensionless flow through valve as function

of pressure and valve area
v plenum pressure coefficient; v = (Pp- P:)/{i plu%)
Vo  mass injector supply pressure coefficient;
WO)' = (Po; N pl’/(ép U%)
VY. dimensionless wa! pressure drop across close-coupled valve,
Yeldiae)
W,  dimensionless pressure rise vs. flow characteristic of
compressor, '¥.(¢)
AY'y downsweam injector characteristic, Wy = V(g - Vy;
AY¥, upstream injector characterisne, ¥y = ¥, - ¥y
wy  Helmholz frequency;
we  filter cut-off frequency
Superscripts
A perturbadon quandrty
first derivadve with respect 10 ime
- second derivative with respect to dime

= tme mean quangty
Subscriots

a ambient

b bleed valve

¢ compressor

«< close-coupled valve

j injector jet

P plenum

T throttle or impeller tp
i compressor duct inlet
2 compressor duct downstream of injector
0 towal
INTRODUCTION

The stable operatng regime of a compressor installed in a jet
engine (or any pumping system) is often limited by the onset of large
amplitude fluctuations in mass flow and pressure rise known as
surge. Due o the loss of performance and thrust, as well as possible
mechanical and thermal loads, surge is an important factor in
compressor design and operation,

Surge is undersiood w be the lowest order nawral oscillatory
mode of the compression system (Greitzer, 1981) and experiments
show that small amplitude, linear disturbances can quickly grow into
large amplitude, fully developed surge (Fink, 1991). Epstein, Ffowcs
Williamns, and Greitzer (1989) proposed that surge could be prevented
by acdvely damping these disturbances while their amplitude was
low. In this approach, the unsieady perturbasions are directly
influenced and the mean operating paraimeters are virually unaitered.

- Epstein et al. gave some discussion of the mechanism of this
stabilization and commented that various feedback schemes actually
differ in how the inswbility is suppressed.

Active stabilization has now been demonstrated experimen-
tally for centrifugal compressors by severs! investigators, for
example, Ffowcs Williams and Huang (1989) and Pinsiey et al.
(1991). Gysling e1al. (1991) also showed that significant gains in
mazs flow range can be realized using tailored soucwre to provide the

Mowving Wail

/ / No Contro!

T

Downstream Throttle
& Plenum Pressure

IA Sutge Point |
T T

01 0.2 03
Mass Flow, ¢

"
1

i

i

Pressure Rise, y
L

o

o
©

Fig. 1: Cenmifugal compressor flow range using different conrol
schemes (data of Pinsley e1 al. {1991), Gysling et al. (1951,
and Simon (1992)) .

feedback path. The stdies also showed thar s jumped parameter
model of the pumping systermn captured the essennal dynarrucs of the
surge process in the machines investgated, and this will be the
approach aken here.

For exampie, Fig. | shows experimental and analysical
results taken from Pinsley et al. (1991) and Gysling et al. (1991),
compared © the results for no control. All the results are for s
centrifugal turbocharger at a pressure rato of roughly two. The
surge point without control as well as with feedback is also
indicated An active compressor sabilization system conceptually
consists of sensors o detect fluid disturbances within the
compression system, acnuators w introduce desired perturbations,
and a suitadle control law connecting the two. Theorerically, surge
requires only a single sensor and actuator, with many choices
available for their rype and locanon. Sensors may measure
pressure, mass flow, velociry, or iemperature within the compressor
duct upsgeam of downswream of the compressor, in the plenum, or
at the throttie. Similarly, tiere are many methods to intoduce
unsteady fluid perturbarions: varying throttle area, moving 2
plenum or duct wall, ingroducing or bleeding off mass flow, varying
the heat addidon in the plenum (when it is a combustor), as well as
ingoducing & variabl: throtde between the cornpressor and plenum,
fo name a few. A representative list of sensing and actuation
options is shown in Table 1.

TABLE 1
SENSING AND ACTUATION OPTIONS CONSIDERED
Actuation Sensing
Injection in compressor duct Inlet mass flow
Valve close-coupied to compressor Pienum pressure
Plenum bleed valve Compressor face Py,
Plenum heat addition Compressor face Py,
Variable pleaum volume Plenum emperature
Variable inlet geometry
Fast inlet guide vanes
Tangental inlex injection
Auxilliary compressor stage
Pleaum mass injection
Inlet duct bleed




The central tenet of this paper is to show that selecdon of
sensor and actuator type and location is a cnitcal factor in determining
the effectiveness and pracdcality of an active sabilizadon sysiem.
Because of the practical interest in this question, the paper presents a
methodology to compare different implementaton alternatives, as
well as carries out this comparison for 2 number of candidate
strategies. Describing the performance of such an actve compressor
surge stabilization system is complex in that there are many sensor-
actuator pairs conceivable. When coupled to the compressor, cach
forms a different physical system, with differing dynamic behavior,
physical limitadons, and overall performance. The steps included in
the comparison of different congol szrategies are thus as follows:

* Analytical models of specific systems are developed to elucidate
the relative performance sensidvities to non-dimensional sysiem
parameters.

»  Numerical calculations are carried out to quandfy the limits to
contol of various sensor-actuator pairs when coanected by a
simple proportional congol law.

«  Opdmal control theory is used o evaluate the physical limits to
control given perfect measurements of the system state.

It may be useful here to mendon two factors that bear on the
overall viewpoint and scope of the present work. First, we note that
the general problem of actuator/sensor seiectdon has been considered
by a number of researchers in other applicadons (see, for example.
Norris and Skelton, 1989; Schmitendaorf, 1984; Muller and Weber,
1972). These previous approaches provide comparisons based upon
somewhat abstracily defined performance indices. For the present
purposes, it was thought useful to obtain quantitanve comparisons in a
manner which is more closely related to the concepts and thinking of
the turbomachinery communiry. The methodology followed here was
developed 1o this end.

Second, the goals of this work are to make clear the large
influence that implementation (sensor-actuator selection) has on the
effectiveness of active compressor congol and to elucidate physical
fimitarions on active control. We thus do not consider all possible
active congol systems but select those which may be most readily
implemented in various gas turbine systems.

COMPRESSOR SYSTEM MODELLING FOR CONTROL

We use a standard lumped parameter model of compression
systemn dynamics (Greitzer, 1981) following the geomeny of Fig. 2a.
This model incorporates the following assumpdons: one-dimen-
sional, incompressible flow in the compressor duct, compressor
considered as a quasi-steady actuator disk; pressure in the plenum is
spatially uniform but varying in time and flow velocity is negligible;
throttle behavior is quasi-steady. The temporal () behavior of the
non-dimensional plenum pressure rise () and non-dimensional mass
flow (or flow coefficient) () can then be described as:

-~

¢ B -v

dt (1a)
LLANS R '
= 8(¢ o1 (v) a

for the system without active control. Equation (1a) expresses a one-
dimensional momentum balance in the compressor duct. Equation
(1b) represents a mass balance for the plenum. The compressor
characteristic, ‘¥ (¢), gives the non-dimensional compressor pressure
rise as a function of the flow coefficient, ¢, and the throatle
characteristic ®p(y), represents the throttle pressure drop. The non-
dimensional quantity B, defined as (Ut/2a) YVITA L], can be
regarded as a measure of the ratio of plenum compliance to duct
inertia. B will be seen w0 be of considerabie importance in

Compressor Throttle

& \

%7 Plenum
7

inlet Duct

Close-Coupled
Vaive

V LY
) o) /A » b
Y
Sensor
»{ Controiler

Fig. 2: Lumped parameter compression system: (a) no conmol
(b) with sensor in inlet and closecoupled valve actuator
conwol system

determining congol effectveness.

To describe actively conmolied systemns, we must account for
the influence of actuators on system performance, represent sensor
measurements, and incorporate & feedback law. Each choice of
SENSOoT-actuator pair results in a disunst system whose dynamics can
differ widely. Because the detailed derivation of the system equagons
is fairly lengthy, we shall derive the characteristic equadons for one
particular system in order w illustrate the idea, and then only present
results for the other systems.

Suppose a total pressure probe at the compressor inlet is used
as the sensor, and a valve which modulates the compressor exit ares is
selected for the acmator. This actuaror will be referred 10 as the close-
coupled valve (Fig. 2b). The basic model of Fig. 2a must be modified
10 include the valve pressure drop in the compressor duct momentum
balance. Because the insanutneous mass flow through the
compressor is the same as the flow through the close-coupled valve,
the equations that describe the system are now:

de

-d-:-r— =B Wc(‘) -y - \yCC(Ot q@)) (2‘)
Y . Ll-
at B (6 -or(v) @b)

Comparison with Eqgs. (1) shows that the original system has been
modified by the introduction of @ control term, ‘¥ (9, 0.), which
represents the pressure drop through the close-coupled valve asa
function of flow through the vaive, ¢. and valve fraction open, O
To include the sensor measurement in the maodel, the following ousgpiu

equation is formed:

vm "yoc {(¢. avc)" Wg(‘)* v,




TABLE 2
OPEN LOOP TRANSFER FUNCTIONS

(Numerator shown in Table; Denominator, D(s), given below)

Actuator Close-Coupled Vaive Plenum Bleed Vaive Moveabie Wall
Sensor
Compressor BT (5 . _._L_) Y WB
Mass Fiow By, D(s) D(s)
D(s)
Plenum Pressure i Y-B W(is-B
D(s) g -Bred "—6(—5&‘2
. D(s)
Compressor Face Ts (, +-1 ) AN W5
Total Pressure By, D(s)
D(s) D(s)
Compressor Face A -W (s + 20B)
Static Pressure ( (2¢B * ‘}s * E—r:) M D(s)
D(s) D(s)

D(s) = 52 #(-B:nLr—e-— Bmc,,)s +{1 -%:r:)

which expresses the total pressure, Yg;, at the compressor face, as 3
function of the suate varigbles, ¢, v, and the inpur variable ...

- For small perturbations from equilibrium which we denote as
$ and i, the system dynamics and measurernent equation can be

approximated by the Linear system
( e i 25|
d‘:[v] _%_(%49_%) ;jhi 0 Qe (3a)
%-lt%—%) IR

which results from retaining only first order terms in a standard
Taylor series expansion about equilibrivm. In & similar fashion, linear
time domain models may be obtained for other sensor-actuator pairs.

The behaviors of systems with different sensor-sctuator
pairing are most clearly revealed from their ransfer functions, which
are defined as the ratio of the Laplace transformed system output
(sensor signal, V) 1o input (sctustor motion, &), For the present
example, the transfer function, G(s), is

G(s) & Y28 T ]
(s} 24 (—-L- Bmce)nv(l m)

@)

In Eq. (4), 8 is the Laplace transform variable, mc, = 3(¥c - ¥ecVa o
is defined as the equivalent compressor siope for the combined valve
and compressor; my = 1/(9D1/3y) is the slope of the throtde pressure

drop versus flow charscteristic, and T = -0 /o relates changes in
valve area to valve pressure drop.

loop ransfer functions for thr ¢ different actuators and
four different sensors illustrated in Fig. 3 are presented in Table 2.
The wansfer functons for all the sensor-actuator pairs in Table 2 have
the sarne denominator polynomial {(denoted as D(s) and given below
the table), but the numerator polynomials differ so that the inherent
differences are captured by the lazter. For generality. the expressions
given in Table 2 use the equivalent throctie siope my, of & throtle in
pansllel with a bieed valve. If no bleed valve is used, my = my,.

[Ty

For feedback stabilization, onc measures the system output,
coropares it with some desired reference level, determines the error
and computes an input signal (command to the actuator) based upon
this error to drive the esvor towards zero. If this can be successfully
accomplished, the system output will be maintined close o che
desired value, which normally implies that the system is stable”.
relationship between the sysiem error signal and the actuator
command is called the control low, and may be dynamic (involving
differential equations) or siatic (using only algebraic reiagonships). In
this section, we will use the simplest conpol law, & proportional
relatioaship between input and output, to elucidate effects of actuator
and sensor selection, but in a subsequent section, we will examine the
impact of the form of the control law.

* It is possible, in special cases, for a system 10 have an insability
which cannot be seen in a particular sensor's output. However, if 3
sysiem is detectable (Kwakernaak and Sivan, 1972) as is almost
invariably the case, this type of pathological behavior cannot occur,
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Fig. 3: Acruators and sensors selected for evaluation

System swability under the influence of a'proportional control
law is determined from the roots of the closed loop characrerissic
equarion (this is derived in many texts; see, for example, Ogata, 1970;
Di Stefano, 1990; Van de Vegte, 1990):

Gpls) + KGn(s) = 0 (5)

In Eq. (5), Gn(s) and Gpy(s) are the numerator and denominator  ~
polynomials, respectively, of the wansfer funcdon given in Table 2
and the gain, K, is a real constant of proportonality in the control law.
The system will be stabie if and only if all the roots of the character-
istic equation have swrictly negative real parts. For the present case,
where the characteristic equadon is a second order polynomial, this is
equivalent to requiring all the coefficients in the equation to be smrictly
positive.

Equaton (5) is the sum of two terms, Gp(s) and KGy(s).
When the control is off (K set w0 zere), subilicy is determined from
the roots of Gp(s) only, and thus is the same whatever the actuator-
sensor pair. As the gain K is increased from zero, system stability
becomes increasingly modified by the KGn(s) term, and because the
various actuator-sensor pairs have different numerator polynomials,
G (s), the effect of feedback aiso varies. This is best illustrated by
several specific examples. The first two examples will show the
effect of sensor type, whereas comparison between behavior in the
second and third illustrate the impact of the actuator.

Example 1:_Close-Coupled Control Yalve
YWith Mass Flow Measurement

Using the appropriate transfer function from Table 2,
substituting into the characteristic Eq. (5), and rearranging results in a
characteristic equadon of the form

ﬂ+(§-i—r:—3m+KBT)s+ll—%:+§£)-o 1)

For stability we require
(S-L—Bmcg-rKBTbO 7a)
e ’

(1-%4»-!{%—))0. 7%

All the parameters in these two incqualides are posigve numbers
except for the compressor slope, mc,. If me, <0, as it rypically is for
high flow rates, the system will be stable with no feedback, that 1s
with K set equal to zero. As the flow rate becomes lower, me, will
become less negadve, reaching zero at the peak of the compressor
characteristc, and then moving to a large enough posidve valye 50 that
the system will be unstable without feedback. For sufficiendy luge
values of the gain K, however, both the incqualites expressed in Egs.
(7a) and (7b) can be simultaneously sansfied and the sysiem can
always be subilized.

Pressure Measurement

In this case, as given in Table 2, the numerator polynomiai of
the ransfer function contains only a consant term. The characienistc
equaton is:

Otsz+(——1—--8 )s+ L. GG U
By, mce ( e ) (8)

The system can now only be stabilized if the equivalent compressor
slope is small enotgh so that the term {1/Bmy, — Bmce) is positive; in
other wol?‘i the equivalent compressor slope obeys the inequality
mCe < /B“my,. The ability of proportional feedback to stabilize this
system is thus limited w a cerain range of parameters. For many
applicadons, B is unity or larger and the throrde slope, my,. is on the
order of ten o one hundred, so the useful range can be quite smail,

Example 3: Plenum Bieed Yaive With Measurement
of Plenum Pressure
From Table 2, the numerator polynornial for this case is
= . ! - B
GN(S) B (S ch ©)
and the charscteristic equadon is given by

O-sz+(—L—-B KV el (1-DCe kv
Bug, 5) ( mre T TC (1)

Whether the gain K is chosen to be positive or negative, it will have
the desired effect on only one of the two coefficients of the
characteristic equation. As a result, sabilizaton is limited to cases
where mc, < I/B. The limitation is associated with the sign chang:
between the leading and the conswant coefficient of Gu(s) (Eq. (9)).
which implies that Gy(s) has a zero in the right half of the compiex
plane. Systems whose mansfer functions have numerators with zeros
in the right half of the complex plane are called noa-minimum phase
systems. The ability to congrol non-minimum phase systems is
known to be subject o0 cerain fundamental limitations (see
Freudenberg and Looze, 1985) and this is just one manifestation of
the generally poor behavior encountered in such sysiems.

The remaining sctustor-sensor pairs whose transfer funcoons
appear in Table 2 have also been analyzed, and the results are
surnarized in Tables 3 and 4. Table 3 gives the characteristic
equation (the roots of which define the stability of the closed loop
system) for all the seasor-scruator pairs. For stability, all coefficients
in the charscteristic equation must be posidve; from this requirement,
the capability of each scheme 1o extend the flow range to high values
of compressor siope can be determined.




TABLE 3
CLOSED LOOP CHARACTERISTIC EQUATIONS WITH PROPORTIONAL GAIN K
Actuator Close-Coupled Vaive Pienum Bleed Valve Moveable Wall
Sensor
Compressor >3 I B ) 2 (_._1_.~ ) 2.{._.1.__
Miash Flow s +(ere Bme, + KBT}s st + Bage B'mcc s $ Brom, Bme s 7
-G KT L] e
#(l MTe +mfe) +1X e * K.V) *(1 Mre * KWB}
Plenum Pressure 524.(___1__3' )s ,2,,(.__1.._3 .,K‘_/.), et __p ,xw);
By, mce B, e B ‘Bm’re mce
~-MCe gL o L "3
+[1 e +KT) (-3 Kmnc, V) +fa e KWBac,)
Compressor Face 2.1 1 _ICI'_.) 2 (..L- B KM) 2 T - xcw}
Total Pressure (1+KD)s +( Bmc‘+3m're+5mre s| s*+ B mee + B s 3 *(ere Bme, s
-Tge -Bce L o3
+(1 o +(1 mr,) *(l mye)
Compressor Face 2+(B A _.x 2 (.._L_. -B KY.) 2 (_..L_ -
Static Pressure (1+KT)s: +( mce#ere + KT2¢B | sé« . mee + 5 s s+ B, BmQQKW)s

+§§r:)s+(l—%:+

————

Kn") +[1-F 2KVe)

0T,

+(1 -lf‘ifra . ZKWQB)

3

TABLE 4
LIMITATIONS ON COMPRESSOR FLOW RANGE INCREASE WITH PROPORTIONAL CONTROL
- Actuator | ise-Coupled Valve Plenum Bleed Valve Moveable Wall
‘Sensor
Compressor Unlimited Range Increase Limited Range Increase Limited Range Increase
Mass Flow K..E%ﬁ. S MCe ™ m‘:t m(-—zr-l;r-
K-’E%E 2 B Bre Bmre
Plenum Pressure Limited Range Increase Limited Range Increase Limited Range Increase
mee < —1— mee <1 mee <4
B%mr, B B
Compressor Face Limited Range Increase Limited Range Increase Limied Range Increase
Total Pressure
mCe < MTe mCe < MTe DiCe < MTe
Compressor Face Unlimited Range Increase Unlimited Range Increase Unlimited Range Increase
Static Pressure \
-~ - B
K ‘2"-.;.% 1s mg, _“Eﬂ&_when-——-zl-—«l !mw‘_"wm;-;z‘;r_(l
K 2B mrr, K -~ 2 e
K-& 25 B e - __m__MumC - -
2T IVemyy CErvise asme, = ZmTeWeB ¢
2 B
K,_Bmv 2B — o K--%‘BB—%-
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The behavior of the different pairs is shown more explicidy in
Table 4, which summarizes the limitadons of each pair. In some
instances, for example sensing compressor mass flow and actuanng
with a close-coupled valve, the range of parameters over which
stabilization may be achieved is unlimited, although large values of
gain may be required with a large compressor slope or large value of
the B parameter. In these cases, therefore, the asympotc behavior of
the required gain is given for large B and compressor slope, in order
to show the meads to be expected in these regimes. As will be
discussed in more detail subsequently, excessive gain must be
avoided in practical simaations; however, as shown in Table 4, the gain
increases either linearly or quadratically with compressor slope and B.
Thus, there will be 3 practical limiradon on maximum slope or
maximum B ar which the system can be stabilized.

An additonal point 10 note is that the limitations on stability
can, in some cases, be relaxed or removed by using & dynamic conrol
law. Thus, the limitations expressed in this section reflect the
combined propertes of actuator, sensor, and control law taken
together, and not necessarily the individual elements. Within the
restricdon 1o a fixed contol law maintained here, however, the
comparison of different sensor-actuator pairs is both valid and useful.

PRACTICAL LIMITS TO CONTROL

The analytcal results so far indicate that the ability to stabilize
the system with proportional control depends soongly on proper
pairing of actuator and sensor, as well as on the values of the system
parameters, particularly the compressor slope (m¢) and B.

In the above examples, he wever, we have considered ideal,
linear systems in which only the dynamics of the pumping system are
modelled. To address the issue of implementation, it is also necessary
to include bandwidth limitations and actuator constraints (for example,
servo dynamics and stops) which are encountered in any physical
realizaton. Asa matter of definition, by actuator we refer here 1o the
entire actuation system including the flow train element (e.g. the
valve), the motor that drives it, and any included feedback elements.

The bandwidth limitations may be imposed by the sensors,
processor, actuator, or some combination of the three. System
bandwidth may also need to be constrained to mainain stability if
unmodelied dynamics are present. Unless the bandwidth of the
actyator is much greater than that of the compression system, there is
2 non-negligible time lag berween the command output of the control
{aw and the response of the flow wain element The lags inroduced
by the actuator generally result in reduced control effectiveness,
although to some degree, they can be compensated for by use of a
control law more sophisticated than proportional congol.

Another constraint on control effectiveness is inooduced by
bounds on actuator influeace. For example, valve areas can only be
modulated between 0 and lOO%(ie.lhevdvemunhemewh«e
between full open and full closed). .

m;mmmmmmm
In this section, we numerically examine the limitations

imposed by effects such as those described in the prececding. Five
actusiors and four sensors are studied as representadive of a diverse se:
of implementation options. The selected actuators were:

1) injection in the compressor duct;

2) close-coupled control valve;

3) pienum biced valve;

4) plenumn hest addition; and

5) a movable plenum wall.

The selecied sensors were:

1) compressor duct mass flow;

2) plenum pressure;

3) compressor face stauc pressure; and

4) compressor face total pressure.

These acruators and sensors are shown schematically in Fig. 3. At the
fevel of idealizadon used here, the close-coupled valve could be ¢ither
at compressor inlet or exit without changing the results.

The linear lumped parameter models of the previous secgon
were extended as required, hecause the various actuators imply
additional system states. The following assumptions were made in
modelling the actuator behavior:

1) the injector flow is incompressible and fully mixed out;

2) the injector is quasi-steady, inertal effects are lumped inw
upstream and downstream ducts;

3) the close-coupled valve flow is incompressible and quasi-
steady;

4) the plenum is well mixed. has uniform pressure, temperature,
negligible velocides, and follows ideal gas laws with constant
specific hear

5) the mass of fuel is neglected and heat release is instantaneous;
and

6) the throtle and bleed valve are quasi-steady.

The differential equations that describe the system dynamics
are obtained by performing balances on momentum in the ducts and
mass and energy in the plenum (Simon, 1992). They are:

dor_ B
&t Yol am

2. B Vew v
dt  (L/c) {(a'¥q + woj) + Ye — Wee - v) (11b)
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There are five states needed. The mass flow rates in the
portion of the duct upstream and downstream of the injector are given
by ¢, and #;, the non-dimensional mass and energy of the gas in the
plenum are given by m* and E®, and the non-dimensional plenem
volume is given by V*. The effects of the various actuators are given
by the functions, AY, and AWy, representing the injector, W,
representing the close coupled valve, Oy, representing the plenum
bleed, Q*, representing the pienum hest addidon and £, representing
the plenurn wall modon.

The general description is noalinear, but it is small
mhmwhchmofptmymmhmuﬂﬁqs (31)canbe
linearized w0 yield an equation set of the form:

£ = Ax + By - (12)
with the output vector y defined as
y=Cx+Du (13)




In Eqs. (12) and (13), the linearized state vaniables x, the inputs u, and
the outputs ¥, are perrurbations from the corresponding equilibrium
values, and A, B, C, and D are appropriately dimensioned constant
matrices. The state variables have been normalized a5 detailed in
Table $, so that unity magnitude for any of these perturbadon
variables has roughly the same physical significance.

" TABLES
NORMALIZATION FACTORS

Perturbation Variable Normalized By
Flow Time mean flow through compressor
Pressure Time mean compressor pressure rise
Thermal input Mean compressor work
Moving wall work input Mean compressor work
Plenum bleed valve area Area 1o fully close valve
Close-coupled vaive area Area to fully open or close

(whichever is smaller)

All twenty pairings of the five actuators and four sensors have
been evaluated with a proportonal control law. Such a comparison
provides rwo useful results. One is the identficadon of acnuator-
sensor pairs which may be stabilized over a significant range of
system parameters using the simplest possible control law. In
addition, for those pairs with significant stabilization, the required gain
gives a measure of the combined effectiveness of this choice of
sensing and acruating locations.

As was discussed, it is useful to weed out those systems
which could mathematically be stabilized but stand litde chance of
succeeding in an actual implementation. To this end, two constraints
were imposed. First, the allowable magnitude of the normalized
proportional gain was limited to be not more than twenty. For
example, at the maximum allowable gain, a five percent change in
compressor mass flow would yield a one hundred percent change in
plenum bleed valve area; that is, the valve would be fully closed,
Second, the bandwidih of the feedback loop was limited by modeling
a two-pole, low pass Bunerworth filter in the feedback path. This
filter can be given various physical interpretagons such as probe
dynamics, amplifier dynamics, actuator dynamics or unmodelied
dynamics in the compression sysiem itself. Whatever the
interpretation, the insertion of the filter insures that the feedback path
has finite bandwidth, a constraint which will aiways exist in practice.
The study was carried out with the cutoff frequency of this filter
mainained at ten tdmes the Helmhoitz frequency of the system
formed by the plenum and compressor ducts. Sensitivity to this
assumption will be examined subsequently.

The figure of merit used to assess the actustor-sensor pairs
was to examine the siability boundaries in a compressor slope versus
B paramneter plane. Preliminary studies shewed that these two
parameters have a dominant effect on sysiem stability, It is thus more
relevant, for example, to quantify the amount of siabilization that can
be achieved in terms of the compressor slope which enters iato the
subility in an explicit manner, rather than the change in mass flow at
siall. The relative extent of the stabilized region in this compressor
slope B-parameter plane thus provides an appropriate and useful basis
for comparison. The boundaries were computed by first performing
an incremenal search over the three-dimensional (siope, B parameter
gain) parameter space. For each fixed B, the value of gain which
maximized the siope at instability, as well s the corresponding slope,
was then found, again using an incremenial search. The stability
boundaries in the B parameter versus slope plane thus represent the
maximum slope which could be stabilized using any gain less than

twenty.

RESULTS OF THE CONTROL SCHEME EVALUATIONS

The results of the calculadons are summarized in Fig. 4, which
shows the stability boundaries for the twenty actuatwor-sensor pairs.
The figure is broken into four plots, one for cach sensor. Within each
plot, the five curves indicate the different sctuators. The region below
and 1o the left of any given line is the region in which stabilization can
be achieved. In the upper left hand plot, for exampie, all the region to
the left of the dash-dot line represents the range of compressor slope
and B in which the combinaton of compressor mass flow sensor and
closecoupled valve is capable of suppressing the insuabilicy.

Several general conclusions can be drawr from the resuits in

The overall trend is that control becomes more difficult as the
compressor siope and B parameter increase, with the maximum
stable siope decreasing with increasing B.

2. Only the actuators located in the compressor duct, which act upon
the compressor duct momentum (injector and close-coupled
control valve), are capable of stabilization at steep slopes over the
full range of B.

3. Plenum heat addidon gives linle or no stability.

4. In general, there is no best sensor independent of the actuator.

For reference, the range of B parameters that might be

associated with large axial gas wrbine engines is roughly 0.2 t0 0.4,

with that for small cenuifugal machines approxirnately 1 to 4.

A more specific conclusion is given by the comparison of the

results with the mass flow sensor to the other sensor locations. As B

reaches a value of roughly unity, the ability of all the pairs to stabilize

the system becomes quite small, except for the closecoupled valve
and the injector which use mass flow sensing. This points out clearly
that not only is actuator position important, but sensor positon is as
well

Fig. 4.
1

The conclusion about the effect of actuator position is one that
is in general accord with intuitive ideas of system behavior, but that
having to do with sensors is somewhat less familiar. [t is therefore
worthwhile to give some physical motivation for the impact of sensor
position.
The different dynamics brought about by the various sensors
can be understood with reference 10 the non-dimensional characteristic
equation for the unsicady system behavior with no feedbacic

s“‘EJm_r:‘Bm)“(l-“E’Tﬂ’o (14)

 For stability the coefficients of the second and third terms mus: be

positive, so that

.
mce <
By, (15a)

me, <mte (15b)
As described by Greitzer (1981) the mechanism of insability can
cither be static, coresponding to the ine Juality in Eq. (15b) being
violated or dynamic, corresponding 10 the viclation of that in Eg.
{15a). Whichever of these events occurs (it is the second that is
genenally more important), the cause for this is a positive slope of the
compressor pressure rise characerisic. Therefore, Jet us examine
how the destabilizing effect of positive slope is ameliorated when
different sensing schemes are used. As a case of high practical
imterest, we consider the close-coupled valve with two different
sensors, one measuring compressor mass flow and the other
measuring the total pressure at the compressor inlet face.

In the first of these, the valve position, and hence the valve
pressure drop, is proportional to the sensed perturbations in
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Fig. 4: Influence of sensor and acuator selection on maximum stabilized compressor characteristic slope

for a bandwidth and gain-limited system

compressor mass flow. The pressure perturbations across the
compressor and the across valve are both proportional to the mass
flow permarbanons. Because the valve is just downstream of the
compressor, the two act in series, creating an effective compressor
stope which is the sum of the (positive) slope across the compressor
and the (negative) slope across the valve. It is this combined
characteristic which the system “sees”,

Suppose the coastant of proportionality between sensed mass
flow and valve opening angle is K, and the rate of change of valve
pressure drop per increment in opening angle is T. For a given mass
flow permurbation, the effective slope of the compressor will change
from mc,, with no feedback, to m¢, - KT when feedback is applied.
Sensing the compressor mass flow and feeding the signal back to the
valve actuator thus works directly on the cause of the instability, the
positive compressor slope. (Insertion of the slope mc, - KT in Eq.
(14) in fact gives just the characteristic equation in Table 3.)

A different situation prevails for the inlet wtal pressure sensor.
Mmlzxmmlpmpmwbm is related to the derivative of the
inlet mass flow, i.e., the fluid acceleration in the compressor duct,
through the unsteady Bernoulli Equation

1
Py=Py =P L Lex
Non-dimensionalizing and linearizing gives

de
Wt g

where 8y, is the total pressure perturbation at the compressor face in
non-dimensional form. If the valve angle perturbation is proportional
to the compressor inlet towal pressure, the result is 10 create a pressure
change across the valve proporticnal to the acceleration, which is the
derivative of the state vanable ¢. In other words the effect of
feedback in this case is to alter the overall pressure difference from
duct inlet to exit for a given fluid acceleration rate. As far as the
system is concerned, this is seen as a change in compressor duct
length, since the longer the duct, the larger will be the instananeous
pressure change that results from a given fluid aceeleration.

An increase in effective length of the duct does several things
10 the system. It drops the natural frequency, which scales as I/YZ.
More importantly, it changes the effective value of the B-parameter,
which also scales as 1/YZ.. Both these changes can be seen in the
characteristic equadion in Table 3, in which the critical value of B for
instability is increased by Y1 + KT, 1 + KT being just the factor by
which the ¢{fective length is increased. In the case of total pressure
sensing, however, only the dynamic insubility is influcnced, because
the increase in effective mass does nothing to alter the static stabxiuy
The insmbility limit is thus still me, 2 mr,.

Somewhat similar arguments can be made for other sensor-
actuator pairs, but the main point is thar the use of different sensors
for the feedback gives the system quite different properties. For the
feedback on mass flow, one of the resistive elements in the system is
altered directly, whereas for the feedback on inles total pressure, it is
the cffective inertia that is changed, and different dynamical behavior
thus results.
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As mengoned previously, the study of the sensor-actuator
pairs was carried out using a value of controi system bandwidth (w)
1en imes the compression system Helmholtz frequency (wy). We
¢an also examine the influence of this parameter, in other words, of
controlier bandwidth, on the stabilization process. Figure S thus
shows the changes in instability onset that occur with different
controller bandwidths for conditions corresponding to the close-
coupled control valve, with feedback on mass flow, and a B-
parameter of 2. In the figure, the horizontal axis is the controller gain,
and the vertical axis is the compressor characteristic slope at
instability. Curves are shown for values of w,/wy from 1.0 to 100,
represendng extremes of this ratio, and it is evident that controller
bandwidth strongly influences the range of stabilization that can be
achieved.

Several rends are exhibited in Fig. 5. First, for a congoller
bandwidth such that @ /iy = 1, use of the conwrol actually degrades
the stability — the more gain the less steep the compressor slope that
can be achieved. In this regime, conmol syste.a effectiveness is
adversely affected by the system dynamics and the influence of
modelling inaccuracies becomes more pronounced. Second, when
w/wy becomes considerably larger, increasing the conmoller
bandwidth increases the compressor slope that can be artained. Third,
for a given level of bandwidth, increasing gain increases stability only
Up 1o a point; beyond this point the stabilization decreases as gain
increases. The value of gain for maximum stabilization increases with
bandwidth.

The necessity to go to higher bandwidth at higher slape arises
because, as the slope increases, the system dynamics become faster
relative to the undamped natral frequency (Helmholtz frequency).
There can thus be coupling between oscillations in the congoller and
in the aerodynamic system that lead to instabilities, so actuator
dynamics play a role in setting the range of stability (as they clearly do
at Wy/ey =1). In fact, the analysis so far of the close~coupled valve
configuration tested experimentally indicates that the degres of
stabilization is theoreticaily limited by a high frequency instability
involving the actuator dynamics. This peint is an imponant one since,
in tmany cases, it is difficult to engineer actuators with bandwidths
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Fig. 5. Influence of normalized control system bandwidth (©¢/wy)
on the feedback gain required and flow coefficient at instabi-
lity onset; close-coupled control valve

many tmes that of the Helmbholtz frequency. The analysis suggests
that actator bandwidth will be 2 prime determinant of practcal
system performance and that research and development on this topic
is useful to pursue.

LIMITS TO CONTROL WITH AN IDEAL CONTROLLER

With the four sensors srudied, and proportional conrol, the
close-coupled valve and injector emerge as the most promising
actuators. A further question to address, however, is whether the type
of compensation or choice of sensors would affect this conclusion. In
this section, optimal control theory is used to provide a definite
answer to this question. To modvate the approach taken, some basic
aspects of linear dynamic system stabilizadon are first presenied. For
small disturbances, the compression system, actuators and
disturbances are described by the linear differential equation set:

Xx=Ax+ Bu+ Lw

where x is a five-dimensional vector of sysiem states, v is a scalar
representing a particuiar actuated variable, w is a p-dimensional vector
of external disturbances, and A, B, and L are constant marrices of
appropriate dimensions. This is just Eq. (12) modified 1o include the
cffect of external disturbances. It is known (see, for exampie,
Kwakemaak and Sivan, 1972)) that sysiems of this type can be
stabilized for all conditons using the congrol law u = -Kx, where K is
now a one-by-five constant gain matrix, provided only that the pair

A B is controllable®. Such a control law is known as full staze
Jeedback and requires that the state of the system, x, be known
perfectly. For a system with n states, this would require n properly
placed sensors. For the situation of interest here, over the range of
parameters which have been analyzed, the requirement of
conrollability is met. Thus, with enough properly placed sensors,
stabilizadon of any idealized linear system is not a problem.

All actuators are not equally suitable for this; some have
excessive amplitude requirements. In the analysis, therefore, the
actuators are compared based upon their minimal required RMS (root
mean square) response o a persistent broadband disturbance, while
maintaining system stability. This comparison is independent of
choice of sensor, because it is assumed that the sute of the sysiem is
known at all imes. Further, the comparison is based upon the
minimnal possible RMS amplimde, and hence there is no queston as
to whether a particular actuator would perform better if another conorol
law were used. In this sense, the comparison is also independent of
the control law.

Specific details of the computations performed are included in
Simon (1992), and a more general treatment can be found in
Kwakernaak and Sivan (1972). The cenmal concept to be used is that,
if the disturbance can be described as a stationary, Gaussian, white
noise process, a particular gain maix X can be found which will
minimize the root mean square value of the actuazed variable u. The
gain martrix K and the RMS value of u will depend upon the marrix L
which determines how the disturbance enters the systemn and upon the
statistical properties of the disturbance.

For this analysis, the disturbances driving the system must be

* A linear time invariant system x = Ax + Bu is congrollable if and
only if there exists a piecewise continuous functon u(t) which will
wansfer the system from any initial state xo(ig) to a final state x{t;) in
a finite Gme interval t; - i (see Kwakemaak and Sivan, 1972).
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Fig. 6: Maximum slope at which the RMS actuation will be no
greater than 25% of the maximum actitator authority; ideal
conuoller and perfect knowledge of the system state

chosen. Three disturbances wera studied: 1) a compressor with an
unsteady pressure rise; 2) an unsteady heat release in the pienum
chamber; and 3) an unsteady outflow through the throttle, In each
case, the input disturbance amplitude (white noise intensity) was
normalized to that required to produce a one percent RMS fluctuation
in compressor mass flow at a fixed, stuble operating point.

The resvits of this analysis are illustrated in Fig. 6. In the
figure, the maximum allowable slope at which the system can be
stabilized is plotred as a function of B for five different actuators,
based on the reszriction that the normalized RMS actuation is no
greater than 0.25 for the most deleterious type of disturbance. The
choice of this level of maximum RMS actuation is somewhat
arbitrary, but it is taken w be one that can be achieved in practice. In
addidon, computations have been carried out at other levels, and the
results show similar rends.

For all the actuators, the maximum stable slope that can be
attained decreases as the B-parameter increases. However, the
seasitivity of the slope to B varies markedly between different
acmartors. As with the proportional control, those actuators which are
most closely coupled to the compressor (the injection and the close-
coupled valve) are the most effective. The figure shows that, for B
greater than unity, the maximurm compressor slope at which the
system can be stabilized is quite limited. (For reference, the’
characteristic of the turbocharger used in the experiments described
previously has a maximum slope of approximately six, i. e., m, 2 6).
In addition, except for the close coupled valve, whose performance
becomes independent of B, the maximum stable slope decreases
monotonically with B parameter. In particular, heat addition, which
might seem attractive because of ease of implementation through fuel
injection, shows little potential for stabilization at values of B larger
than unity.

Another result is that the behavior of the plenum bleed, the
injector, and the moving wall are roughly comparable, although the
injector has some advantage for larger values of B (greater than two,
say). Atthese high values of B parameter, however, the close coupled
valve has a clear advantage,over all of the other schemes examined, in
stabilizing the system.

EFFECT OF DISTURBANCE TYPE
ON SYSTEM BEHAVIOR

The influence of the disturbance type on controlled
compressor performance ts shown in Fig. 7 for the close coupled
valve, the actuator shown to be most effective in enhancing flow range
for large values of B. The horizontal axis is the slope of the
compressor characteristc, and the verrical axis is the normalized RMS
actuartion level. The difference berwen the three curves indicates the
impact of disturbance type on the ability to control the system.
Compressor pressure rise disturbances, such as might arise from local
unsteady flow in the impeller or diffuser, create a situadon that is
more difficult to conrol than disturbances due to combe:stor heat
release or throtle mass flow fluctuadon.

The implication of Fig. 7 is that the nature of the disturbances
driving the system is an important factor in setting the requirements
for stabilization. There is litde known at present about the detailed
disturbance structure within turbomachinery and engines. It thus
appears that characterization of these unsteady phenomena is a
research item of considerable practical concem.

SUMMARY AND CONCLUSIONS

An evaluation of strategies for the active congol of
compression system surge has been carried out, as a first step towards
developing rational design procedures for active surge stabilization. A
basic result is that acwators and sensors which measure and act upon
the momentum of the fluid in the compressor duct are the most
effecdve for geometries and compressor slopes of interest for gas
turbine applications. Although this result was qualitatvely known, the
analysis has quaniified the severity of these wands, showing them to
be extremely important over the parameter range of interest The
following specific conclusions can be made:

« Proper choice of actuator and sensor is an important part of the
overall design of a surge stabilization system.

» Mass flow measurement with either a close-coupled valve or an
injector for actuation are the most promising approaches of those
evaluated,
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Fig. 7: Influence of compression system disturbance type on actuator
moton required to stabilize the system; closecoupled valve
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+  Fuel modulation is not a promising candidate for practcal ranger
of system parameters.

+  Characterization of compression system disturbance sources is
imporant for determining tne requirements for active congrol
schemes.

«  Steep slopes and large B parameters make control :nore difficult.

+  Actuator bandwidth ¢an be an important constraint in many
pracdcal implementadons.
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A Theoretical Study of Sensor-Actuator Schemes for
Rotating Stall Control

G.J. Hendricks® and D.L. Gysiing™

Gas Turbine Laboratory, Massachusetts institute of Technology
Cambridge, MA 02139

ABSTRACT

A theoretical study has been conducted to determine the
influence of actuator and sensor choice on active congol
of rotating stall in axial-flow compressors. The sensors
are used 10 detect the small amplitude raveling waves that
have been observed at the initiauon of rotaung swll on
several different compressors. Controt is achieved by
feeding the sensed quantity back to the actuator with a
suitable gain and spatial phase shift relative (0 the
measured wave, Actuators using circumferental paterns
of jets, imz;:e ports, and movable v;:;lex guide vanes (e
upsuream of the compressor, and valves downstream o
compressor were considered. The effect of axial velocity,
staic pressiuzre, or tolal pressure measurement on conwrol
eifectniveness was investigated. In addition the inflluence
of the acmator bandwidth on the performance of the
conrotled system was determined. The resuits of the
study indicate that the potental for active control of
rowung stall is greater than that achieved thus far with
movable inlet guide vanes, Further, axial velocity sensing
was most effective. Actuator bandwidth affected the
perfarmance of the connolled compressors significantly,
but cenain actuators were affecied less severely than
others.

NOMENCLATURE

Compressor annulus height

Jet valve opening

- Steady wtal pressure loss across rotors

- Steady total pressure loss across suasor

- Permrbation in total pressure loss across rotors
- " Perwurbation in total pressure loss across stators
- Inlet total pressure . 0

- Exit static pressure permrbation

Inlet static pressure perturbation

« Inlet wtal pressare pertarbation

- Compressor annulus mean radius
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Non<umensional Uime U/}
Compiex foedback gan Re™

Disturbance growth raue

Compressoe efliciency

- Flow coefficient ¢, U

- Flow coeflicient perurbation

- Inerua parameser for compressor rowrs

- Inerva parameter for compressor

- Circumferential coordinate

- Feedback spaual phase shift

- Fluid density

- Non-dumensional sCuatOr gme conRSAn

- Non-dimensional rowr total pressure loss
charactenistc tme

Non-dimensional stator total pressure logs
characierisoc time

- Disturbance rotational frequency

Rotor rotational {requency

Total-to-static pressure rise

- ldeal (isentropic) towl-to-static pressure rise
Sieady staie tonal-to-static pressure rise

LINTRODUCTION

Active control of serodynamic and mechanical instabilities
has auracted considerable resesrch interest in the past few
years. Work is being conducted at a number of
institutions in spplications including the control of
boundary layer snd combustion instabilities. This paper
addresses active control of rotating stail, a fluid dynamic
instability which limits the operating range of
COMpressors.

Rotatng stall, which is characterized by a region of
stalled flow rotating about the annulus of & comprassor,
has 2 severe effect on the operation of a gas wrbine
mgine.mm encountered, the instab g:y CRuSeS an
in the pressure rise across the compressor,

resulting in a significant decrease in the power output of
the engine, In addition, engine health is affected sdversely
by large fluctuating loads that are induced on the
compressor blades. Because of this, the compressor of the
fu turbine engine is normaily operated far enough away

rom the stall initiation point to ensure that instability is
not triggered under any engine operating condition, with
the margin of safety known as the stall margin. Because
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rowating stall is normally encountered close to the peak of
the pressure-rise characteristc of the compressor, the siall
margin places a limit on both the performance and
operating range of the engine. An acuvely conuolied
compressor could operate siably past the peak of the
pressure rise characieristic. With the same stall margin as
in the unconorolled case, the peak of the characienst.”
could then be a safe opertting point.

Active control of rowating stall studied here is based on 3
linear mode! of its iniauon. The model implies that, a
the inception of the instability, small amplitude raveling
waves develop in the compressor annulus, grow in
magnitude and eventually develop into rotaung sl cells
{11, {21, [3]. Although such small amplitude waves have
not been observed in all situations, they are a clear {eature
of recent tests on several compressors of widely different
geomerny (4], (5]

The correspondence observed so far between linear fluid
dynamic analysis and experimental observations is
encouraging since it gives one confidence in using the
theory 1o design devices which can be used to modily the
injes and/or exit flow fields of the compressor in order ©
suppress the instability. These contoiling devices would
act in the inception phase of the instability, before it
develops 10 its performance limiting amplitude. The
controliers that will be described in this study are
therefore designed (0 prevent the compressor from going
into rotating stall when the system is operated within the
parameters of the contoller.

A schematic diagram of a conceprual controlied system is
shown in figure 1. A fluid dynamic variable which gives
an indication of the magnitude and form of the instability
is sensed by a suitable array of tansducers. The signal
from the transducer array is processed by the congoller
which commands the actuator (0 incroduce a suitable
control disturbance into the flow field. Inital swdies of
this problem [3] have considered only simpile congol
strategies, for example actuators which introduce a vortical
velocity perturbation at the comrwor iniet plane (a
mode! for movable guide vanes far upstream of the
compressor). The use of close coupled movable iniet
guide vanes for the control of romaung stall has been
demonstrated experimentally by Paduano [6,7] and
Haynes (8] (the sulling mass flow rate was decreased by
23% in the experiment on a single siage compressor (6,7],
and 8% on a three stage unit {8]). The objectve of the
present study is 10 examine the potential for increasing the
system controllability, in particular to assess the
effectiveness of a number of different sensing and

.- 2. oL T . S s

2.1 Qverall Consideratians

The analytical model used in this study is an extension of
that described in [1], [2], and (3]. The analysis is two -
dimensional, so only high hub-to-tip ratio machines are
considered. The mean inlet flow field is undistorted
(uniform inles total pressure), and the inlet and exit ducts
are assumed long, so that end effects, i.e. reflection and
scatering of the disturbance wave from the ends, are not
important. In addition, the tip speed of the compressor is
assumed 12 be low enough for the flow field 1o be
considered incompressible. In the analysis an arbitrary
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Figure I: Compressor with actuator and sensors

axial velocity disturbance wave is decomposed into 1
spaoal Founer harmonxcs:

&, = iA “e™*  ,wher 5= (griw)
¥ -t ) . «

In the above formulauon ar /U represents the rotaton
rate of each spanal harmonic non-dimensionalized by the
rotor rotational speed. and ar/U U non-dimensionabized
growth rate of the disturbance. The spatial harmonics,
which are the natural eigenmodes of ihe sysiem, can then
be analyzed independently, since the equations descnbung
the evolution of the ingtability are lincar. When the above
form of the flow coelTicient perturbation is substituted
into the differental equations descnbing the dynamucs of
the fluid in the compression system, the analysis yieids an
eigenvalue problem in 5 with the growth and rolalion rates
of each spaual harmonx determined from the soluton to
the eigeavalue problem. If the real part of 5 1s negative,
the disturbance is damped, represenung stable operation of
the compressor; if the real part of s is posiuve, the
disturbance grows exponentaily, representng unstable
operation.

1 the compressor is assumed to operate in 3 quasi-sieady
manner, i.e. pressure rise is a function of flow coefficient
only, the mode! predicts that all the spatial harmonics of
the flow coefficient perturbation become unstable at the
operating point where the total-to-statc pressure.-rise
characienistic ( ¥ vs. ¢) becomes positively sioped.
Distrbances sre damped where the characteristic is
negatively sloped, and amplified when the characierisoc is

itively sloped, with the growth rate of the pertrbadon

ing determined by the magnitude of the positive siope.
In the formulation of the model used in the present study
the quasi-steady assumption is hot made.

2.2 Unsteady Compressor Behavior
It has been observed in experiments [9,10], that the
rise aCTOss 3 compressor does not respond

1Inmumnly to variations in flow coefficient. This is
thought to be a result of the finite time required for the
flow fieids within the blade to respond
?ﬁh:ngcs in flow coefficient. 17:5 Nite response :ir;se“ of
compressor pressure-rise 10 flow perturbatons has a
stabilizing effect on the ions, and higher
harmonics are stbilized to 2 greater extent than lower
harmonics. When this effect is included the analysis, the
spatial harmonics of the disturbance become unstable




sequentially, with higher harmonic disturbances becoming
unstable at larger posiave slopes of the compressor 1ol
W-static pressure-nise characwensuc (i.e. lower flow
coefficients). This behavior has been observed in
expeniments on both single and three stage low-speed
compressors (6.7,8], and the mode! shows good
quantitive agreement with expeniments conducted on a
three stage compressor [11]. The sequenual
destabilization of higher spanal harmonics of llow
coefficient disturbances has beneficial implicauons for
active contol. By conarolling only the furst spaual
harmonic of the disturbance, an increase in stable
operating range can be obaained, down to the flow
coefficient at which the second spatial harmonic of the
disurbance becomes unstable. By contoiling both the
first and second spatial harmonics > 2yond this flow
coefficient, the stable operating range can then be extended
10 the operating point where the third spatial harmonic
becomes unsiable. Using this contral approach, the
maximum range extension possible is therefore dependent
on the number of spatial harmonics of the disturbance that
one is able o contol.

It has been mentioned earlier that the slope of the
compressor pressure rise characteristic dy/d¢ . is an
imponant parameter governing the growth rate of a
disarbance wave. The pressure-nise characteristic shown in
figure 2, which has a slope going to an infinite posiuve
value at a flow coefficient of 0.25, is used in the
computations described below since it covers all positve
slopes that could be encountered in pracuce.
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Figure 2: Compressor total-to-static pressure rise
characteristic used in the analysis © -

A ACTUATORS AND SENSORS

Actuators normally introduce both potental and vortical
disaurbances into compressor inlet or exit flow fields.
Polendal disturbances decay with axial distance from the
scouator whereas vortical disturbances persist, and are
convected with the flow field downstream of the actuator.
One of the initial objectives of the study was o determine
the type of disturbance tial or vortical) that would be
most effective in controlling rotating stail disturbances.

For an acmator to produce purely vortical control
disturbances at the compressor face, it must be located
sufficiently far upstream of the compressor for potential

Compressor

i
i
]
Figure 3: Iniet guide vane actustor

disturbances produced by the actuation 10 decay to small
amplitudes &t the compressor face. 1f 50, there 15 2 ume
delay ¢ ing 1o the convecnon ume of the conrol
cisturbance from the actuator w0 the compressor face
introduced into the control system. Even at moderate
slopes of the compressor pressure-rise characeeristc, the
time scale associated with the disturbance growth rate s
much smaller than this convection delay ome. Actuators
that produce & parely wvucal disnurbance at the compressor
face are therefore not effective in conolling rotaung sall,
and in this study only close coupled actuawors are
considered. Actuauws can be considered close coupled uf
they are positoned a distance much smaller than the
compressor radius from the compressor inlet or exit plane.

The foliowing actuators are considered:

1) jets upstream of the compressor

2) mske ports upstream of the compressor

3) valves downstream of the compressor

4) movabie inlet guide vanes upstream of the compressor

This iz not 3 complete list of the actuators that could be
used to control rotating stall, but the actustors considered
give an indicadon of the varistions in performance that
one could amﬂmgan actuator. The actuators
are shown sc ically in figures 3.4, Although the
intake port and jet actuators are similar physicaily, they
differ in the type of disturbance that inroduce into
the flow field. The jet actuator is supplied by a high
pressure reservoir whereas the intake port actuator is
supplied by a reservoir having the same total pressure as
the compressor inlet. The consequence is that the intake
port actuator introduces only potential disturbances into
the flow field whereas the jet sctustor introduces both
tial and vortical disturbances. (Gysling [12] bas
identified the jet distribution as an effective actuatorin a
similar study on control of rotating stall using
aeromechanical feedback.). In the study, the reservoir of
the jet actuator is supplied by the exit of the compressor,
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$0 the reservoir stagnation pressure is set equal 1o the exit
Stagnaton pressure at the CoMpressor operating point.
The intake port actuator does not require such 2 high
pressure air supply; fluid at the total pressure of the inlet
air can be derived from the free saeam outside the
compressor casing. The movable inlet guide vane acnzator
has already been impiemented experimentally by Paduano
{6] and Haynes {8], and is used as a basis for comparison
for the other actuators. These experiments have aiso
served as a validation of the modeling technique used in
the study.

. In the uncontolied compression system the relation
between flow coeflicient and pressure permurbstons at the
compressor inlet and exit plancs;sdemmmed by the
dynamics of the fluid in the compressor, and in the inlet
and exit ducts of the compressor. Under active control
these relationships can be manipulated by the actuator. In
the analysis the acmators are modeled using quasi-steady
acmator disk theory. The last aspect of the analysis
involves a fluid dynamic variable, and prescribing
a feedback law the sensed variable and the
acwation. Only the following proortional feedback law
is considered in this paper;
Actuation = Z x Sensed variable ,where Z=Re"
R is the gain in amplitude of the sensed variable, and O,
the circumferential spatial phase shift of the actuated wave
relative 10 the sensed wave. In the study the gain and .
spanalplmeofﬂnfwdbackngmlmopummdfu—
various cormpressor operating conditons.

mwumemmwofmemmrwmdxffa&omm
command given by the coatrotler. To capaure this (non-
ideal) benavior, the acuator is modeled as a first-order

time-lag syseem:

z d(actuation)

. s = command - actuation

A gme lag T, 15 assumed berween the aCtuauon and the
command given by e contruiler. The inverse of Uus ume
constant, I/T, represents the bandwidih of the actuator,

When the feedback law and actusior dynamics are coupled
0 he compressor dYnamics. 3 new cagcnwuc probiem i
generated, with the sigenvaloes of the system, ie. he
growth rate and frequency of the disturbance, dependent
on the gain and phase of the {eedback signal. The effec:
of non-ideal dehavior of the actuator on the Sysiem
performance can be sssessed by varying the tme constant
associaed with the sctuation (virving the bandwidth of
the acuator). These effects are descnibed in the rext
SEBON.

Sensors messuring the following ficw vansbles are
evaluated:

1)} axial velocity
2) sabc pressige
3) sagnation pressure

A comparative study was done with the sensors
positioned at vanious axial stations i the compression
system; upsgeam of the actuator, between the actuator and
the compressor, and downsressn of the compressor. The
performance of the congolied sysiems are reponed only
with the sensors located at the axial suations where they
perform most favorably.

A dewiled analysis of the compression sysiem led
Mmmcmxmauug:venmAppmduAm
Mﬂmotmm:mxwmubwonm
mode! developed by et al, and dewuls can be
found in [6] and {7].

4. CALCULATED RESULTS AND DISCUSSION
4.11Influence of Actuator Type

Figures 5-8 present neutral stability curves for the first
harmoanic of the distarbance wave, The resuits for the
higher spatal harmonics show trends simiiar to those for
the first harmonic. The figures show the maximum
compressor siope (dy/d¢ ) at which stabilization can be
achieved, as a function of contoller gain for the four
actuators considered. The areas below the neutral stability
curves re t sable operation of the controlled system.
For the jet, intake port and valve sctuators, gain is defined
as the raoo of the non-dimensionalized mass flow added
10, or removed from the flow field, and the sensed varisble
(velocity, static pressure, of stagnation pressure as
indicated in Appendix B). For the movable inlet guide
vane actuswr, the gain iy defined as the ratio of the
deflection angle (in radians) of the inlet guide vanes from
their zero positions, and the sensed vaniable.

In each case the perfarraance of the controlled system is
shawn with the sensor located at its optimum axial
mm(mﬂlmmngmeunlnmtyﬁwm
gave the best results). The horizontal axis in the Ggures
represens the spstial phase shift between the measured
dissurbance and the sctuation, and the vertical axis shows
the siope of the compressor total-to-static pressure rise
characteristic. Only positive compressor siopes are shown,
50 the figure represents an operating range that was
previously inaccessible w the unconguiled compressor.
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Figure 5: Jet actuator; compressor slope at heutral
stability as a function of feedback gain and
phase. The system is stable in the area under

the curves.
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Figure 7: Downstream valve actuator; compressor slope at
neutral stability as a function of feedback gain
and phase. The system is stable in the area
under the curves.

(The analysis was also performed for negative
characteristic slopes; this indicated that the control system
could destabilize a naturally stable compression system for
certain phases of the controller.)

To facilicate comparison, the neatral stability curves for
the four actuators ing at a gain of four are plotted on
the same axes in fi 9. %‘lus gain was used for -
comparison since ail the actuators showed unstable
behavior for mu:wphm above uusva&z}e. (Anw .
experiment on a stage compressor {8] aiso
M&ﬁmdkmm&gﬂeﬁfwwm

Itshonldbemwddmmepafommofmeinluguidc
vane actualor is influenced by the "swirl sensitivity” of
the compressor, i.c. the rate of change of pressure rise
across the com with inlet guide vane deflection.
The swirl seasitivity of the three stage compressor on
which the experiment was performed (8], was used in the
analysis since it was thought (0 be representative of
compressors. Swirl sensitivity is determined
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Figure 6: Intake port sctuator; compressor slope at
neutral stability as 8 function of feedback gain
and phase. The system is stable in the ares

under the curves,
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Figure 8: Inlet guide vane actuator; compressor slope
at neutral stability as a function of
feedback gain and phase. The system is
stable in the area under the curves.

primarily by the rate of change of the pressure rise with

inlet guide vane deflection in the first stage, since the

inlex angles t the rotors of the downstream stages are not

affected significantly by inlet guide vane deflection. It is

therefore not on the number of stages of the -
compressor, if the geometric configuration of the first
stage is similar. . -

Three performance parameters that are important in comparing

the varions actuation Systems are: ‘

1) the largest positive compressor slope that the controlled
system can achieve; this gives 2 measure of the range
extension provided by the actustion system, -

2) the phase margin of the controller, which gives a measwre
oﬂfemngegphmomwhichmecomomdsymu
stable at a particular operating point, and

3) the rotation rawe of the controlied perturbation. Under
active control both the growth and rotation rates of the
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Figure 9: Comparison of actuation schemes; velocity
sensing, gain=d4,

flow perturbation are modified. The rowaton rate of the
controlled disturbance is important since it is one of the
parameters that determines the bandwidth requirement of
the actuator. An actuator that increases the rotation rate of
the perturbation is undesirable.

From fi 9 it is apparent that the upstream jet
dismbu% delivers the most favorable performance. In
addidon to providing the highest degree of range
extension, the jet distribution also has the {argest phase
margin at a fixed operating point. At a compressor slope
of 1, for example, the jet distribution stabilizes the

com over a phase range of 250 degrees, as opposed
to 100 degrees for the intake port distribution, and
approximately S0 degrees for the downstream valves. The
movable inlet guide vanes cannot stabilize the compressor

at any phase at this slope.

Figure 10 shows the change in the growth and rotadon
rates of the first spatial harmonic of a disturbance in the
individual controlied systems, at the optimum phase for
each, as the feedback gain is increased. The jes
distribution again performs most favorably since
disturbance rotation rate is reduced as the feedback gain is
increased. Note that the rotation rate of the disturbance
wave is dependent on the gain and phase of the feedback
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Figure 10: Perturbation growth and rotation rates
at the optimum phase for each system

signal, and the dependence of rotation speed on gan
shown in the figure holds for the opumum phase based on
range exiension al the parucular operaung point that was
chosen. For a parucular operaung point one could also
opumizzﬂm‘?hucofmemuauomopmduuwmww
rogation rate for the congolled disturbance. Even if
feedback phase is opuimized in this way, the oends shown
in figure 10 hold, i.e. the jet actuawor achicves [ower
disturbance rouon rawes than do the other actuawors.

4.2 Influence of Sensor

Sensing schemes are compared using the jet distribugion
23 an ACIUMOC, SINCE if appears W be the most effecave
based on the performance criteria idenufied above. Figure
1l showsa ison of the sysiem performance with
the various sensing schemes. [n this Hgure the sensors are
located at the axial station where they perform best;
downstream of the actuaior for axial velocity sensing
(either upstream or downstream of the compressor), and
downsream of the compressor for statc and stagnation
pressuse sensing. From the figure it is apparent that the
sysiem performs best when axial velocity 1s sensed.
While axial velocity is readily measured in low speed
flows with hot wires, these sensors are not pracucal in
high speed wirbomachinery. Here velocity could be
synihesized from towal and static pressure measurements.

There are indications dwlbedisappoinunf

of the pressure sensors could be a result of the simple

er&hckhwﬂntmum. The sysiem
onmance could possibly be improved if dynamic

compensaton is used in the feedback loop, but this was

not pursued in the snudy.

4.2 Influence of Actuator Bandwidth

For the results that have been presented thus far, a bandwidth

of five umes the rotor frequency has been used in order 1o

compare the sctuators and sensors operating as close as

possible o ideal. This actuator bandwidth might be difficult

1o achieve in practice and figure 12 shows a comparison of the

performance of the jet sctuatoe for various bandwidths, from

five times rotor down to 50% of rotor frequency.

The major effect of decreasing the bandwidth is narrowing of

the phase margin of the actuation system. The range extension
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Figure 11:  Jet sctustor with various sensors; neutral
stability at a gain=4,



0 50 100 150 200 2% X0 I
Phase Angle

Figure 12: Jet actuator; neutral stability asa
function of actuator bandwidth

gained from the actator is affected less severely by namower
actuator bandwidths.

The other actuators are impacied moce severely by a
decrease in actuator bandwidth than is the jet actuator, as
szen in figure 13. The plot is similar w figure 10, except
that the actuator bandwidih has been decreased from five
to two times rotor frequency, Because the rotational
frequency of the controlled disnrbance is small in the case
of the jut actuator, the increased time delay corresponds to
a small additional spatial phase shift between the sensed
and the a:tuated waves, so the effect on the stability of the
wave is relatively small. With the vaive and intake port
actuators, the frequency of the controlled wave increases
significantly as the gain is increased, as seen in figure 10.
An increase in actuator time delay therefore increases the
spatial phase shift between the sensed and actuated waves
significandy. In addition, from figure 9, it is evident that
the range of phases over which these controfled systems
msmbkissﬁ;iﬁcanﬂynnﬂ!am in the case of the
jet actuator. additional spatial phase shift in the
actuation which resuits from the increased ume delay
moves the ggg:un outside the area of previously stable
operation. This is clear if Li.e compares figure 13 to
figure 10. The effects of time delays can probably be
decreased if suitable dynamic compensation is used in the

1

Disturbance frequency, et

Oisturbance growth ram, art)

Jigure 13:  Perturbation growth and rotation rates
(bandwidth = 2 X rotor frequency)

feedback loop, but this has not been pursued in the
present study.

4 Practical Imol ,

It has been observed in the experiments that have been
conducted with the movabie inlet guide vane actuator thal
flow coefficient peruirbauons of the order of 1% are
experienced upsteam of the actusior when the compressor
is operated under active congol {13]. For the je:
distnbution, the mass injected inlo the com

annulus would be ximately 2% of the annulus mass
flow for every | % flow coeflicient fluctuanon upstream of
the actuator when the controtier is operated at 3 gun of
four. The control can influence comdprtsor efficiency in
two ways. The first would be the effect of the jets on the
detailed fluid mechanics in the blade passages. Tlus may
have a posilive or negative unpact on performance
depending on the design details. This question is beyond
mcscapeohrmpmemmdy: The second impact on
compressor efficiency is associsted with the air supply
required to feed the jets. If the injected fluid is supplied
from the compressor exit, an efficiency penalty would be
incurred since the injected air would then be recycled
through the compressor continually. If this were the only
source of efficiency loss, the efficiency of the controlied
system can be approximaied by the expression:

v+0.5(1+x) 8" +x8(9, - 0)
f? QA+ x)w+0.5( +x)' ¢*)

where 1 is the mass fraction of fluid recycled through the
compressor. The ratio of contolled o uncontrolled
efficiency is ploted as a funcoon of mass fracuon
recuculaled in figure 14, for a compressor operating af 2
tota! o-static pressure rise of 1, at a flow coefficientof 0.5
(these are the operating conditions of the three stage
experimental compressor that has been used in the active
control prognm ciose to stall (8]). For a recycled mass
fraction of 2%, an efficiency penalty of approximately 1%
is incurred, which may be acceptable as it need only be
incurred in the otherwise unstable portion of the
compressor map, since the contol system may be
deactivated on the stable part of the compressor map. If

g .
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Figure 14: Efficiency loss ratio as a function of mass
fraction recirculated for the jet actuator




the efficiency penalty is of concern and only a modest
inCrease in range exiension is desired, the other acation
schemes such as the maving inlet guide vane and inake
port actuators could be selected, since these do not incur

the bleed air penalty.
S CONCLUSIONS

The model that has been used in this study captures the
behavior of the rotating stall disturbance waves that have
been observed in expenments. The quantitative agreement of
the model with the experiments gives us confidence in ysing
the modeling technique in the analysis of the congolled
compressors considered in the study. This theoretical
analysis indicates that a circumferential array of jets
upstream of the compressor performs significantly better than
the other actuators that were considered, in all of the
performance criteria that were identified. In addition 0
providing the maximum range exiension, jes also
outperform the other & tualors that were considered in other
areas that would be important in practical applications. The
large phase margin associated with jet actuaton implies that
the system will not be sensitive to errors in disturbance
wave measurement. The jet acwator decreases the rotation
rate of disturbances and this alleviates the high bandwidth
requirement of some of the other actators. One may )
however, incur an efficiency penalty when the jet actuator is
used, because of the high pressure air supply required. This
penalty is incurred only if the compressor is operated in the
previously unstable flow range. Whether this efficiency
penalty is acceptable or nnt depends on the design goals of
the compressor.

The results of the study also indicate that velocity sensing
is more effective than either static or wotal pressure sensing
in controlling rotating stall disturbances, for the

ional control law that was considered. In low speed
compressors velocity sensing with hot wire probes is
effective, but in high speed compressors the use of hot wires
might not be practcal. The velocity perturbation could then
be synthesized from static and total pressure measurements.

The bandwidth mcg_xixemem of acmators is important since it
has a significant effect on the performance of the controiled
system. For the jet actator the phase margin of the
controlied sysiem is degraded as the bandwidth of the
actuator is reduced.

Finally, although the movable inlet guide vane actuator
performed well in practice, it did not compare favorably with
the other acmators that were considered in the theoretical
-study. The potential for com) range extension is
therefore much greater than that achieved thus far in the

laboratory. '
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APPENDIX A: QOVERALL FLOW MODEL

The basic derivation of the flow has appeared several times
before [1,2,3] and is included for completeness only. In the
model the pressure rise across a compressorumod:rcd by
the pressure difference required o overcome the inertiz of the
ﬂmd within the blade channels, when the flow within the
compressor is unsteady. If one assumes that the flow within
the blade passages is one dimensional, the unsteady pressure
rise across the compressor can be written as ({1], {2]):

P-F 1%-.‘.{.@2 (A1)

pU? V=t%s " U a
where: y=v.-L -L, (A2)

y; is the ideal stagnation pressure rise across the
compressor and L, and L, are the rotor and swator stagnaton
pressure fosses, The inertia of the fluid in the rotors and in
the compressor are represented by 4 and u respectively. At
the initiation of rotating stall, the flow coefficient through
the compressor is modified by a smail perturbation §¢ so
thar

dy,
=0+ = .+———5
¢ 6¢ Vf V: d¢ ¢
P, =P, +6P, L =L +6L, (A3)
P, =P, + 6P, L =L +8L

The compressor pressure rise perturbation equaton is
therefore:

oP,— &8P, _ dy 3(8¢) _wr 9(5¢)
e e -......L - - - -
(A4)
Vl = V- +Lv.u +Lu (As) .

where y_ is the steady, axisymmetric total-to-static pressure
rise including losses, and L, and L, the steady stator
and rotor stagnation pressure losses respectively. The stator
unsteady stagnation pressure loss permrbation, 3L, is taken
to be given by the differential equation:

aéL) L.,
=g = “ —=5¢ - oL, (A6)

The rotor unsteady stagnaton pressure i0ss. 8L, has 10 be
calculated in a reference frame rotatng with the rotwr:

L) U dLYY _ L, . -
( ar ro a9 }- e bo = &L, (A7)

In the analysis, a general perturbation in flow coefficient
of the form:

5= g Ao e (A8)

is considered. Each spatial harmonic of the perturbauon
can be considered separately and only the ath spaual
harmonic:

5¢=Aloier e (A9)
will therefore be examined.

The variables describing the evolution of the perturbaton
can be non-dimensionalized as follows:

- W -
1=—, T
r

1144 £= (a+iw)r

—. 7 (A10)

H

where U is the rotor speed and 7 is the average radius of
the compressor annulus, so that the equations describing
the perturbation become:

P, -5P, dw;& &, - 8L, - 13(&) d(é¢)

pU‘ a9 gt

(All)

—ad(L,) _ dL
Sl o sy 2
LTS 7 5¢ - &L, (A12)

a(oL,) , L, )) Low 59 -

r,( = 55| = 380 - 8L (AID)
& A et it (A]‘)

The upstream stagnation and downstream static pressure
perurbations are given by the expressions [3]:

8P, _ 1358
7™ (A1
8P, _ 1358

,and T (A16)

Substitution of (A15), (A16) and (Al4) into (All)-
(A13) produces a generalized, complex eigenvalue
problem in s

(A-358)8%=0 (A1)




where:
1{dy. . 1 1
- — A ——— ——
4'( d¢ } 9 {
1 dL )|
= ot ” A —_—— 0 AlS
A T : (A18)
1 d.,, ( 1}
e et 0 -lin+—
\ T do )
(1 0 0 5¢
B={0 1 0, &x=|&L, (A19), (A20)
\0 0 1 oL,

;:[_l’.?;.’-y-y} sand y, =y, +L,+L . (A2]), (A22)

The solution to the eigenvalue problem yields the growth
and rotation rates of the perturbation wave. If the real pant
of s is negative, the disturbance is damped, representing
stable operation of the compressor. If the real partof s is
positive, the disnurbance grows exponeatially, representing
unstable operation. For the unconolied compressor the
growth rate of the perturbation is determined by the stope
of the total-to-static pressure rise characieristc.

To determine the unsteady response of the compressor 0
flow perturbations, an isentropic pressure rise
characteristic for the compressor has to be assumed. For
the analysis it is assumed that the compressor operates at
its maximum efficiency at a flow coefficient of 0.6. AL
this maximum efficiency operating point the slope of the
isentropic pressure rise characteristc is close to that of the
measured pressure rise characteristic, since the losses are
minimum. To simplify the analysis, the isentropic
characteristic is assumed to have this slope over the entire
operating range of the compressor as shown in figure 15.
The steady total pressure loss -
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Figure 15  Compressor total-to-static characteristics
used in the analysis.
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(L (®)=L,(9)+L,,(9)) used in equation (AS) is
then the difference between the isengopic pressure rise
curve and the measured one. {n the analysis it is aiso
assumed that sieady w1l pressure losses are equally
distributed across the rotors and the stators (i.e.

Luc = l..)‘
APPENDIX B:

MODIFICATION OF THE FLOW MODEL FOR
ACTIYE CONTROL

In an actively controlled compressor, the relationship
between pressure and velocity perturbations can be
manipulated by the actuator. Analysis of the various
actuators involves determining relationships between the
actuation and perturbations in velocity and pressure
inroduced into the flow field. The actuators are modeled
using quasi-steady actuator disk theory. Mass and
momentum balances across the actuators give relatonships
begween velocity and pressure perturbatons upstream and
downstream of the actuators, as a function of the actuaton.
The upstream jet distribution will be used as an exampie
to illustrate the analysis method. A mass balance across
the actuator gives:

ple,+8c )}, vpc 8l =plc, + 8,,), (A23)

and non-dimensionalizing the velocities by the rotor speed
U yields:

&l

5¢1=5¢;+¢,‘T‘L

(A24)
The non-dimensionalized injection rate ¢,(5/,/1,) isa
function of the annulus spatial variable 8. The non-
dimensionalized injection axial velocity ¢,, the jet nozzle

opening &l,, and the annulus height /,, are indicated in
figure 16.
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Figure 16 Jet actuator
A momentum balance across the actuator gives:

ple, +8 ), +(P+8P), +pc 8, = w29
P(c: + &xl)a I‘ +(P+6P1)l.

I olndlsy first order terms are retained, the above expression
yields:

&P SP al
;(7‘; = TIJ;+(¢’ *20)0;—# (A26)




Equation (A26) can be written in terms of the ol
pressure perturbation at the compressor face:

5P, &P 8,
pu*  pU? *(9;-9)9; i, (A7)

The downstream static pressure perturbation is given by
expression (A16). It is apparent from (A23) and (A26)
that the compressor injet total pressure and flow
coefficient perturbations can be controlled by specifying
¢,(31, /1), the annular injection rate of jet fluid into the
air sream.

Control is accomplished by sensing a fluid dynamic
variable describing the perurbation. The measured signal
is then processed by the contoller which commands the
actuator to ingroduce a suitable perturbation into the flaw
field. In the simplest congoller, the measured signal is
modified in amplitude and shifted spatially in phase

portional feedback). This is implemented analytically
as follows; if the flow coefficient perturbation at the
compressor face is sensed, the commanded jet injection
rate is:

wiz&{: 280, ., Z=Re™ (A28), (A29)

where R is the gain in amplitude of the signal, and 9, is
the spatal phase shift of the commanded signal relative to
the measured signal. In practice, non-ideal behavior will
cause the output from the actuator o differ from the
command given by the controller. To capture the non-
ideal dynamics, the acwator is modeled as a first order
system:

N TORATRE. 1B 1
T, 5{:(4’;'}:—) = 4’,?{- 9; 7 (A30)

where T, is the time constant associated with the actuator,
If the flow coefficient (axial velocity) at the compressor
face is sensed, the actuator equation becomes:

- d 8l o
7, 3‘.-[@#) = Z6&¢, - ¢,—[.J- (A31)

Seasing the other fluid dynamic variables give the
following actuator commands:

stagnation pressure upstream of the actuaror:

51, _ éP, - _7% _ ﬁ
"T.{“Z}?" Zi{on-0g) e

static pressure upstream of the actator:

ot &P s o
= 7 e 2 = P —d L
¢,—'-{1‘ sz‘ Z(M-#-¢I5¢, ¢ L ) (A33)

11

exilt stauc pressure:

& - 6P, $ )
T T I = 20 (A34)

exit stagnaton pressure

8, éP, 5
o el

which, when substituted into equation (A30), yield
equations similar t0 equation (A31).

Equations (A11)-(Al3) and equation (A30) with the
appropriaie sensed variable produce an eigenvaiue
problem. Parameters in the analysis are the operating flow
coeflicient (which determines the slope of the pressure rise
characteristic), the gain and phase of the feedback control
law, and the bandwidth of the actuator. For the jet
distibution with velocity feedback the system of
differennal equations reduces to the form given in (A17),
where the matrices A, B, and the vector 8% are now:

(1 (dw. ] 1 1 1
| i A - —-— —l -
7\ e 3 z(%-9)
_‘__d‘{‘:.u ~_l_ O 0
A: ?l d¢ ?l
1dL,, ( 1}
7, d¢ 7,
4z 0 0 L
\ t, T,
(A37)
1 é¢,
100 e
[nl¢ éL,
B={0 1.0 0 | st 5 | (A38), (A39)
001 0 5l
¢.__
000 1 b,
with:

‘= (ﬁv #} vand v, =y, +L,+L,,. (A4O), (A41)

There are four eigenvalues for each spatial harmonic of the
disturbance.




V1. CONTROL OF SURGE AND STALL WITH STRUCTURAL DYNAMICS
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The gpproack raker & 10 suppress surge Or modifring 1he comprpsson syiiem
dynamc behauior uning Jtructurs! feeddeck. Moce specificaily ore waii of a down
stream voiume, 07 Dienum. i comyirucied 50 &3 10 MmO in response 10 imal per
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operating range of 1h¢ compresnon sysiem [n iAg paper, & inmped paremeler ansiviy
i carried Qut (o define the coupinrd serodynamie and siructurs! svizem behetror end
the poterntal for stebidganon. Fute-of-a-kind experiments gre then conducind 1o
examne the conclunons ¢f the anciysa. As predacted by the modei gnd demonsiroterd
by experiment, @ movabie plenum wail iowered (Ae mass flow at which Jurge occurred
in @ cenirifugal compeession sysiem by roughiy 15 percent [or ¢ ronge of operaing
conditions. In addition, because the 1zilored dynamics of (A0 siructure 8¢ty 1o pup-
presy rstabilitues 1n thewr ininial stages, this control was achsevabie wak relairoaely
lutle power being dusspered by the mopabiv woll syztem, and with a0 noncecbie
decrease in steody-state performance. Although desigred on the basis of Limeor f¥siem
considerations, the struciurdl control i3 shown 10 be copobie of suppressing exissing

large-amplitude fimit cycle surge escitlonons.

Introduction

The operating range of turbomachinery compression systems
is very often limited by the onset of fluid dynamic instabilities.
Surge is a self-excited, essentially oge-dimensionai instadility,
which is chrractenced by oscillatioos in area-averaged mass
flow and pressure rise, and is generaily the most imporiant
instability in centrifugal compression systems. Surge can cause
reduced performance and efficiency of the turbomachinz, and,
in some cases, failure due 10 the large unsteady 2erodynamic
forces on the blades (Scenning, 1980).

To avoid surge, the compression system is generally operated
away {rom the '‘surge line,’’ the boundary betweer stable and
unstable operation on the pressure rise versus mass flow per-
formance map. Opersting the compressor at some distance
from this line, on the negatively sloped part of the compressor
speedlines, can ensure stable operation. Doing this, however,
may resuit in 2 performance penality since peak performance
and efficiency oftet occur near the surge line (Dean and Young,
1977).

The goal of the research described here is to develop methods
10 extend the stable operaring range by modifying the dynamic
behavior of the compression system to suppress surge. This
would allow compressor operation in previously unusable, or
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even previausly unstabie, regions of the compressor map. The
experimental phase of the current research ¢ focused on cen-
infugal compression sysiems, although the analyss apphies to
20l COMPression systems a5 well

Dynamic Surge Suppression

Surge is the manifestation of a3 dynarmuc instability, which
occurs when the compressor feeds more mecharucal energy
into disturbance . than the rest of the system can dissipate. The
result 13 an oscillatory disturbance that grows exponentally,
until limited by nonlineanty, into a limit cycle (surge cyzie)
The key to dynamuc surge suppression, therefore, lies in in-
creasing the system's ability to dissipate or damp thus disturb-
ance energy (Epstein et al., 1989).

There have been several investigations of surge suppression,
all in recent years, using ciosed-loop active control to increase
system damping. Ffowes Williams and Huang (1989) used 2
movable plenum wall, driven by a2 signal proportionai to the
unstesdy plenum pressure, to suppress surge in a centrifugal
turbocharger. Pinsiey et al. {1991) describe active stabilization
using & variatle ares throttle valve, also driven by a signal
proportional to the unsteady plenum pressure. Both of these
studies demonstrated that surge can be suppressed in the linear
regime, before the disturbances grow to large amplitude, by
modification of system dynamics through ¢losed-loop control.

There has been little previous work on stabilization using
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structurgl feedback. In this approach, the dynamic properties
of the system are modified 50 that the compression system
becomes inherently stable, without external input. A limited
analytical investigation of such a control scheme has been
carried out by Chen (1987). He found that a variable area
throttle valve, modeled as a mass-spring-damper driven by
pienum pressure perturbations, would have a stabilizing effect,
but that a flexible plenum wall with no damping would be
destabilizing.

Scope of the Present Work

The work reported here is directed at surge suppression in
centrifugal compression systems using tailored structural dy-

famics a3 a fecdback mecharysm. A movabie plenum wai i
used a3 the tailored siructure. The movabie wall acts a3 2 masy.
spring-damper system driven By unsiesgy pressure periurba-
uons iy the plenum, and 18 mouon s thus (Cupicd 10 e
compression system dynamics. A schematc of & genenc ngsd
compression sysiem and a modified compression system having
a tmiored structure 1S shown 1n Figs Ja) and 1(2)

ft wilt be demonstrated that an appropriately tmlored moving
piesum wall can sigmf ~antly extend the stable oOperaung range
of a compression system. The aeroelastic coupling between the
wall and the basic compression system allows the damper on
the moving wall to dissipate mechanica! energy associated with
flow dusturbances, thereby suppressung surge. The degree of
suppression depends on matchung the structural dynamucs (©
the system fluid dynamics. A set of neadimensions! param.
eters, which govern the interaction between the compresuon
system and the wall, are thus presented and theyr influence s
developed. Experiments are carried out 1o evaluate the actual
performance of the flexibie plenum wall system and the an-
alytical model.

System Modeling

The basic lumped parameter model of the compression sys-
tern has been used by other authory (0 investugate surge for a
rigid plenum configuration (e.g.. Emmons et al., 1945, Grestzer,
1981). In this description, system inertia is represenied by the
fluid in the inlet ducting, systermn compliance s due 10 the
compressibility of the fluid in the plenum, and sysiem damping
{positive or negative) is due 10 the compressor and the throttle.

The differential equations describing the compression system
with flexible pienum wall are given below.

Iniet duct momentum

47

Py P - Py - L2ALE

The quantity AP, is the compressor pressure rise, which is a
known function of mass flow, m.

Mass conservation in the plertum

. . 1 4
m,-m,..d——-u“;f ! @

Nomenclature

wy = Helmholtz frequency =

a = speed of sound U = impeller exit tip speed An/Vol,
A, = compressor inlet area v = nondimensional wail veloc- w, = frequency of wall mass-
A, = plenum movable wall area ity spring-damper system
B = suability parameter V = volume di./dé = slope of compressor char-
= (U/20) V(¥ e/ Ain ) W = nondimensional wall aero- acteristic
= (U/2wyl ) elastic coupling parameter
C, = axial velocity { = nondimensional wall damp-  Subscripts
f = Coulomb friction force ing ratio parameter ¢ = compressor
F = nondimensional Coulombd n = nondimensional wall dis- in = compressor inlet
friction force = f(polPA,) placement p = plenum
I = rotational inertia of turbo- p = density t = throttle; tip of impeller exit
spool r = nondimensional time = 0 = ambient conditions
L = effective length Wyl 1 = compressor exit
m = mass of plenum wall ¢ = mass flow coefficient = 2 = plenum exit
m = mass flow m/(pyUA,,)
P = pressure v = plenum pressure coefficient  Operators
AP = pressure difference = (P, - Pp)/0.5p,L8 &( ) = perturbation quantity in
AP, = compressor pressure rise Ve = COMPpressor pressure rise _ analysis
AP, = throttle pressure drop coefficient = AP,/0.50,L° { ) = time averaged
g = wall displacement ¥ = throttle pressure drop coef- ( )’ = fluctuation in experimen.
@ = wall frequency parameter ficient = AP,/0.5p,L" tally measured quantity
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Throttle pressure drop characteristic
P f AP ™ P ] (3)
The throttle pressure drop AP, is also a2 known funcuon of

mass flow.
Wall dynamics

mé*cé*kq"(Pp‘Pwunvmum)A; (4)

Linearizing and nondimensionalizing the equations of mo-
tion as shown in the appendix yields the following nondimen-
sional equations describing the linear stability of the system:

Intet duct momentum

%%sﬂ[ % 60,—6\0] (5
Mass conservation in the plenum
%t%[&r-w-ﬁ‘:;%bu ()
Throttle pressure drop characreristic
e g, ™
5, ¥
Wail dynamics '
B o a2 - (2 72 rQ)au— (?2 Q‘)an ®
dr Pooy Po
d.
-;—-‘: =§v (9

In Egs. (5)-(9), nondimensional pressure rise and mass flow
coefficients, ¢ and ¢, are defined as

AP m
= , ¢=
%po(}a PoA U

The nondimensional wall displacement, 7, is given as
Y
v, 14
In Egs. (6)~(9), perturbation variables are denoted by &( ),
and steady-siate variables are represented by ( ). Nondimen.
sional time is defined in terms of the Helmholtz frequency, »
= wyt, where the Helmholtz frequency is defined as:

wy=3, i,
=
il ’«] Vol.

Other definitions can be found in the appendix.

The parameter dv¥./d¢ is the slope of the nondimensional
compressor pressure rise characteristic and is linked directly
to the onset of the surge instability. In the regions of the
compressor map where this slope is negative, both the throttle
and compressor act to damp out flow disturbances. In the
positively sloped regions, the compressor adds energy to dis-
turbances while the throttle continues to dissipate unsteady
energy. For a rigid wall system, therefore, the flow through
the system becomes unstable when the compressor feeds more
energy into disturbances than the throttle can extract.

Nondimensionsal Psrameters. The behavior of the system
described by Eqs. (5)-(9) has a complex parametric dependence
involving the following nondimensional parameters.

The B-parameter has a major influence on the surge dy-
namics of the compression system (Greitzer, 1981). It is defined
as:

L. Y |V
L, 23, N Ank,
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For the fixed wall compression system al a given Gperating
point, the magnitude of the (positive) compressor characternsye
slope required for disturbances (0 grow is set by the S-param.
eter, which can be viewed as providing a measure of the coy.
pling between mass flow oscillattons through the compressor
and through the throule. The larger the 8-parameter, the more
isolated the throtte is (from the compressor), and the less able
to remove energy from flow disturbances. As the B-parameter
increases, therefore, surge occurs at a smaller positive com-
pressor slope.

The tip Mach number (based on plenum conditions) is de-
fined as:

Ma

%
The tip Mach number enters the system equations as a measure
of the effect of wall motion on the mass balance in the plenum.
It thus does not appear explicitly for a fixed wall confliguration.
The tip Mach number affects the coupling of wall motion o
compression system dynamics by determining the degree to
which plenum pressure responds to wall motion. The pressure
and mass flow fluctuations are functions of tip Mach number
{they scale as M? a1 low speed), but the wall motion is not.
The Mach number is thus a measure of this aerodynamic-
structural coupling, rather than a representation of the im-
portance of compressibility in the systermn dynamic model. The
larger the Mach number, the smalier the effect a given non-
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dimensional wall motion has oa nondimensional mass flow
and pressure perturbations in the system.

The parameters W, |, and Q determine the wall dynamic
characteristics relative (o the unsteady behavior of the basic
(tigid wall) compression system. W is an aeroelasiic coupling
paramerer delined as

W_ooA:J_-ﬁ
mV,
This parameter determines the degree to which the wall re-
sponds to the pressure fluctuations in the plenum. Increasing
the W-parameter implies a greater wall response to pertys-
bations in pienum pressure.

tis the critical damping ratio of the plenum wali mass-spring-
damper system, corrected to remain independent of compres-
sor operating conditions. Correction is necessary since the
aerodynamic spring constant, and hence, the wall natural fre-
Quency, varied with plenum pressure. { is defined as

< [
Zmu, Po

Q defines the ratio of natural frequencies for the wall mass-
spring-damper system and for the fixed wall compression sys-
tem (the Helmholtz [requency), also corrected so that it is
independent of compressor operating point.

g==2 |2
W N Pp

Linear Stability Analysis

Linear analysis of the system stability for a given set of
operating conditions leads to the set of equations shown below:

dye v
8((5) s -2B% 0 0
° 13 5, 1 %
35y w0 o M'Y
0 0 -5 1
o wrt g _yg fi"Z!-s ]
Po Puog
56, o]
x |50 10)
& 0 (
Sv 0

Equation (10) constitutes an eigenvalue problem for the (com-
plex) growth rate, s, involving two coupled dynamic systems:
the compression system, with variables 8¢, and 8¢,, and the
moving wall, with variable &y and dv. The terms associated
with the uncoupled fixed wall compression system and the
moving plenum wall dynamics are located on the tridiagonai
of the stability matrix. The two nonzero terms located off the
tridiagonal are the aeroelastic coupling terms.

Solving the eigenvalue probiem as a function of B, M, ¢,
W, {, and Q and using the experimentally determined com-
pressor characteristics of Pinsley (1988) enables prediction of
the instability onset condition for various system and control
parameters, The fixed wail behavior is obtained in the limit
of either W = 0 or Q = oo, Either has the effect of making
the wall appear massive and the spring constant stiff, or es-
sentially rigid.

To illustrare the trends obtained from the stability com-
putations, a root locus plot for a fixed wall system with 8 =

Journal of Turbomachinery

0.5 is shown in Fig. 2(a). The compressor pressure nse char-
actenistic used 15 based on a third-degree polynomial curve fin
of Pinsley's (1988) measured 70K speedline as shown in Fig
3, the measurements being conducted unng a close coupled
throttle 10 avoid surge. The abscissa and urdinate of the root
locus plots are nondimensionalized by the system Helmboltz
resonator frequency. The roots are plotied as a funcuon of
nondimensional Nlow coefficient for flow coefficients ranging
from 0.175 10 0.070 in increments of 0.005. As the mass flow
decreases and the compressor slope increases, the poles are
driven from the left hall-plane (stable) to the right half-plane
{unstable), with the imaginary axis defining the neutral stability
point. The behavior is that of a (positively or negatively)
damped second-order system. The neutral stability point for
this fixed wall system (at ¢ = 0.116), as indicated on the
compressor characteristic in Fig. 3, occurs near the peak of
the characteristic, which is located at ¢ = 0.120.

The introduction of a2 movable plenum wall introduces a
second mode of oscillation to the compression system. A root
locus plot for the two modes is shown in Fig. 2(b), agan
using the compressor characteristic shown in Fig. 3. One char-
acteristic frequency is somewhat close to the Helmholtz fre-
quency, but there is now another frequency that is associated
primarily with the wail motion. More importantly, however,
the neutral stability point occurs well past the peak of the
characteristic in the positively sloped region at ¢ = 0.92; this
is also indicated in Fig. 3. Away from instability (high mass
flow), the moving wall system has one (damped) oscillatory
mode and one nonoscillatory (overdamped) mode. Near insts-
bility, the two modes exhibit increased fluid-structure coupling
and both become oscillatory.

To optimize the moving wall compression system perform-
ance, a parametric study was performed. Since the B-parameter
and Mach number are not independent quantities (both scale
with wheel speed), the relation between these two parameters
i this study is based on selecting values for the dimensions
of the compression system that were typical of modern
compression machines as well as convenient from an experni-
mental view point. The parameter scarch showed that movable
wall performance is optimized, over the range of B-parameters
and Mach numbers used, with the following control param-
eters: W = 0.11, = 1.5, and Q = 0.5}. (These parameters
were used in Fig. 2b.)

The steady state mass flow coefficient by itself (i.e., explicitly
rather than through the effect on compressor characteristic
slope) is not a very useful indication of stability for the op-
timized moving wall system. Determining the maximum com-
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Fig. 3 Compressor prassure rise characteristic used in anatysis; data
of Pinsiey (1988)

OCTOBER 1991, Voi. 1137713

E

!
'




)

1.6 -

Optimized
Moveable Weil

— 2 EFFECT OF 8 PARKMETER ON STABIITY
>{.
wie Mi0$
‘M
0 i Denign Range ¢
oY 08 ar ) 09 “
8 Pusmeter

EFFECT OF MACHK NUMBER ON STABRITYY

1 8s08
Des
m

04 : r . - . ' \ —

Maximum Comprosser Characisristic Siops, (
o
™
t

0.4 - Y v
e0 ¢z 04 '’ s te
] Ty Mach Numper (M)
~~~~~~~~~~~~~~ Fixed Weil Fig. § Ingepandsan! eltects of B-parsmeter and tip Mach numder on
0.0 r "“"‘;"””; ~~~~~~~ ) maxi Rigvabis cOMpressor cheracianslic siape for stadie oper.
T T T T A “o
Y o8 a? 68 09 10 o0
B Pasrameter 0
Fig.4 Maximum schievable compressor characteristic slape lor stadis . '
cOMPressor aperation versus B-parameter 08 4 Dissipation in Movesdis Wall System
2 EFFECT OF COUPLING PARAMETER ON STABILITY ! 08
‘ /- s‘: ™7
¢ 1 T Ty T T T Y T ™ } ! “ 02 4 Dissipation in Thvottie
;u ~ 00 0.04 0.08 012 0.18 020 5 SRR TET R ASE
] ,: Coupling Parsmeter (W) 0.0 ey e e
. 08 0.6 0.7 0.8 X 10
3 8 Pararneter
2 Fig. 7 Comparison of pertwhstion energy dissipation in throttis end
% EFFECT OF FREQUENCY PARAMETER ON STABILITY in movable wsll system; relative units
3 , /7\\‘_ €330r Operal
H 0 tuned'’ for each compressor operating condition. The inde.
g o'o T 0'3 4 oTs T g . T 1‘2 T s pendent effects of B-parameter and tip Mach number, for a
§ ’ - Freauency Parsmeter @ : : system with a fixed set of control parameters, are shown in
] ¥ Y Fig. 6 where one parameter is held constant and the other
X varied. As discussed, although the tip Mach number does not
£ directly affect the stability of & system with a fixed wall, it is
o 2 EFFECT OF DAMPING CONSTANT ON STABIUTY an important parameter for the stability of the moving wall
; system.
L3 L4 ¥ \ ¥ L ¥ T T 1 . . . . , .
0.0 0.6 12 18 24 2.0 To examine the physical mechanism associated with stabi-

Demping Constart )

Fig. S Effect of tailored structure control parameters on maximum
achievable compressor charscteristic siope for stable operation. | in.
dicaies optimum vaiue from psrsmeter ssarch.

pressor characteristic slope at which the system was stable
versus the B-parameter was found to be a much more useful
discriminant for the effectiveness of the control strategy. The
maximum stable slope versus B-parameter for the fixed wall
system and for the (optimized) moving wall system is shown
in Fig. 4; as indicated, the movable wall system is capable of
.. stable operation at a positive compressor slope that can be an
order of magnitude larger than that for the fixed wall system.

We can also plot maximum stable siope versus each of the
control parameters about the optimized values to see how
rapidly one departs from optimum conditions. Figure 5 shows
the variations in maximum stable slope versus W, {, and Q,
respectively. The optimized values are indicated by acrows,
Although substantial changes in the structural control param-
eters away from the optimized configuration will degrade per-
formance, the stabilization is insensitive to small (& 25 percent,
say) variations. This implies that the system need not be ‘‘re-

7141 Vol. 113, OCTOBER 1991

lization, it is useful to look at the perturbaction energy. From
this viewpoint, the system is unstable when more energy is fed
into any mode of oscillation over a cycle than is removed;
neutral stability corresponds to zero net energy input. Because
the modes are orthogonal, it is only necessary to consider one
mode at a time. If any mode is unstable, the system is unstable.
The analysis is given by Gysling (1989) and we present here
only the central resuit. '

Figure 7 shows the relative perturbation energy input and
dissipation over a cycle at the neutral stability point, as a
function of the B-parameter for the mode that becomes un-
stable first. Energy dissipation due to the wall motion is dom-
inant, being more than ten times that for the throttie over a
large range of B-parameters. The stabilization due to the wall
is thys direct dissipation through plenum wall motion, rather
than modification of the system dynamics to promote increased
dissipation in the throttie, as was the case in the throttle control
experiments reported by Pinsley et al. (1990).

Time-Domain Analysis and Noalinesr Aspects
The linear analysis yielded a set of optimized, nondimen-
sional control parameters, which gave large increases in the
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stable flow regime, The response beyond the initial instability,
i.e., the nonlinear system behavior, is also of interest. Non-
linear computations were thus performed to assess the effects
of finite amplitude disturbances and of nonlinearities in the
wall dynamics. The equations of motion were integrated using
the Newmark time-averaged acceleration method (Bathe and
Wilson, 1976). As in the linear analysis, the compressor char-
acteristic shown in Fig. 3 was used.

As an example of the results, Fig. 8 shows the time response
of the optimized system to a small impulsive disturbance at
the inlet operating near the linearly predicted stability line (¢
= (.096). Wall motion and pressure perturbations exhibit es-
sentially damped harmonic motion. A more interesting point,
to be discussed further in connection with the experiments, is
that the nonlinear computations showed that introducing wall
motion into a fixed wall system undergoing deep surge cycles
could suppress the surge. In other words, even though the
control scheme was designed based on linear analysis, it was
useful for osciilations that were strongly nonlinear.

An important use of the nonlinear analysis was to examine
the effect of Coulomb friction in the wall dynamics, The pres-
ence of Coulomb friction, in a strict sense, invalidates the
linearity assumption. However, the degree to which the ac-
curacy of the linear model is affected is a function of the ratio
of the Coulomb friction forces compared to the other, essen-
tially linear, forces in the system (Halfman, 1962). To assess
this, computations were carried out with a constant magnitude
friction force imposed on the wall in the direction opposite to
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its motion, to model the sliding friction present in an actua!
design.

One important resuit of the Coulomb friction is that it pre-
vents the wall from responding to disturbances below a thresh-
old level, i.e., disturbances must grow to a critical ampiitude
before the wall can respond. Therefore, in a strict sense. op-
etrating points to the left of the natural surge line remain linearly
unstable for the actual (nonideal) tailored structure system.
The linear instability that resulis from the presence of Coulomb
friction grows into a limit cycle, whose amplitude (for a given
compression system and set of control parameters) is a function
of the nondimensional friction force, F, defined as

Fﬂ’—z}-;—"/
pl/A,

and the slope of the compressor characteristic.

The effect of Coulomb friction on surge suppression is dem-
onstrated in Fig. 9 where the root mean square of the calculated
limit cycle pressure fluctuations, divided by the steady-state
pressure rise, is plotted versus the local compressor charac.
teristic slope, for various nondimensional friction levels. The
vertical dashed line denotes the value of slope corresponding
to the results in Fig. 10, discussed below. The maximum value
of the slope prior to deep surge (large amplitude oscillation)
decreases with increasing friction levels. The deep surge bound-
ary for the nonlinear system with Coulomb friction agrees well
with the linear stability boundary in the limit of zero friction.
With increasing Coulomb friction levels, however, the per-
formance of the movable plenum wall system approaches that
of the fixed wall system. Analysis showed that the movable
plenum wall became unable to suppress surge significantly past
the rigid wall surge line for nondimensional friction ievels
greater than F = 0.02.

As examples of predicted limit cycles with different levels
of Coulomb friction, the time response of systems with various
levels of Coulomb friction to a small impuise (0.01 in units of
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¥7) is shown in Fig. 10. Parameters are given in the figure
;aption. The amplitude of each limit cycle is indicated in Fig.

The disturbance decays in the system without Coulomb fric-
tion, but grows into a limit cycle in the systems with Coulomb
friction. For the system with a small amount of Coulomd
friction (F = 0.006) the limit cycle is small and approximately
sinusoidal (mild surge) with frequency near the predicted
Helmholtz frequency. However, for the system with larger
Coulomb friction (F = 0.030), the limit cycle is no longer
sinusoidal and contains regions of reversed flow (deep surge).

Experiment Design

The basic prediction is that a properly designed moving
plenum wall can substantially increase the stable flow range
of a centrifugal compression system. To investigate this ex-
perimentally, a design study was undertaken to match the
nondimensional control parameters, while minimizing the ef-
fects of nonlinearities, in a physicaily realistic device.

The conceptual design was based on use of an existing cen-
trifugal compressor facility, constructed to investigate active
throttle control of surge. The facility is described in detail by
Pinsley (1988); however, the major components will be outlined
here. The centrifugal compressor was a Holset model HID
turbocharger. The impeller has an inlet area of 0.00125 m?
with hub-to-tip radius ratio of 0.37 and exit tip diameter of
0.055 m. The compressor has no inlet guide vanes, six biades,
six splitter biades, and a vaneless diffuser. A schematic of the
compression system facility is shown in Fig. 11.

Design of Movable Plenum Wiall

Several different ways to implement the coatrol scheme me-
chanically were reviewed. A major constraint was that the wall
had to be capabie of withstanding large steady-state and tran-
sient pressure loading, yet still respond to small amplitude
perturbations in plenum pressure. A rigid piston serving as the
plenum wall, and an aerodynamic spring, were determined to
be practical solutions to these constraints. In particular, &
design utilizing a separate, explicit spring, mass, and damper
Wwas attractive since it facilitated paramertric experimentation.

No atterpt was made to engineer a ‘'flight weight'' system.

To serve as the movable wall, the rigid piston was mounted
on a shaft, guided by linear bearings and allowed to float
between the main plenum and an auxiliary plenum, The seal
between the two plenums was made with a low-friction, con-
voluted diaphragm. A small-diameter tube connected the two
plenums so they were isolated for high-frequency pressure dis-
turbances (i.e., surge oscillations), but steady-state pressures
were equalized so that no steady-state load existed on the
piston. A mechanical spring was used to maintain a constant
equilibrium position for the piston over various operating con-
ditions since at steady state, the plenum wall had no preferred
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::cbi:t. 1 Design speciticstions for the flezidle plenum wall espenments
ty

B Parameter 065 w10

Helmholuz Frequency 185Hr 0 199 Hz

W Parsmeter Q.11

Q Parameter ¢.51

{ Paramecer 151030

Agea of Wail 0.0669 m?

Mass of Wall 6.2 kg

Yolume of Plenum ) 0208 md

Iniet Ducy Length 1.16m

Inlet Area 0.00125 m?

Auxiliary Plenum Volume 0.0388 m?

Acrodynamic Spring Constant 24,000 n/m o 35000 n/n
Mechanical Spring éonmn 2100 wm

Damping CoefGicient 1000 n s/m 16 2000 n /m
Maxamum Wail Modon +/-1.25¢e¢m

Coulomb Friction i0n

position. The mechanical spring also allowed the steady-state
position of the wall to be adjustable.

Because the presence of the steady-state equalization tube
could affect the behavior of the aerodynamic spring, com-
putations were carried out to quantify the effect of leakage
between the two plenums. The leakage was modeied as flow
through an orifice plate. The results are shown in Fig. 12,
where the decrease in maximum slope prior to surge is plotted
versus nondimensional orifice area for the optimized system
at typical operating conditions. Leakage caused small ampli-
tude limit cycles similar to those predicted to occur as a result
of Coulomb friction, so it is important that leakage be kept
t0 & minimum.

A viscous dashpot was used for the damping. To minimize
Coulomb friction, a low-friction, pneumatic, double acting
actuator was modified to serve as a damper. The actuator was
filled with SW-30 oil and the ports on either end were connected
through a variable area valve. Testing of various dashpots
developed from the same basic design showed that the force-
velocity relation for the dashpot was closely linear over the
expected range of wall velocities, as well as easily adjustable.

The final rig specifications are given below in Table | and

“a detailed drawing of the movable plenum wall apparatus is

shcwanig 13.

Experimental Dsata sad Analysis

The compression system was investigated with fixed and
flexible wall for three different sets of structural control pa-
rameters, at B-parameters ranging from 0.65 to 1.0. Steady-
state measurements were used to map the compression system
performance and to define the surge line for both fixed and
flexible wall systems. Time-resolved measurements were used
to evaluate the model assumptions and to determine the per-
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formance characteristics of components in the compression
system and in the flexible wall.

Steady-State Bebavior. The experimental compression sys-
tem could be operated in a fixed wall configuration by shutting
the steady-state pressure equalization line and bleeding the
auxiliary plenum to atmospheric pressure. Pressure in the main
plenum then forced the walf against its upper stops, yielding
a fixed wall configuration. Forcing the plenum wall against
the upper stop resuited in increasing the pienum volume ap-
proximately S percent, and, hence, the B-parameter 2.5 per-
cent, which had a slightly destabilizing effect on the fixed wail
compression system. Any movement of the surge line to the
left due to wall motion will thus slightly overestimate the actual
increase in stable flow range, although this difference is small
compared to the difference seen between the fixed and flexidble
wall systems. (We have not tried to correct for this in the data
presentation, but it should be noted that our estimates of the
shift in surge flow coefficient due to this change in B-parameter
are roughly one-half percent of the surge mass flow as » worst
case (at low speed), and one or two tenths of a percent at
higher speeds. Thus, these changes are, in general, two orders
of magnitude less than the difference between the fixed wall
and the movable wall surge points.)

The compressor was operated at carrected speeds (referenced
to 288 K) ranging from 60,000 rpm to 100,000 rpm, corre-
sponding to a range of B-parameters of 0.65 to 1.0. The steady-
state performance is reported in terms of (inlet total to plenum
static) pressure ratio and mass flow, given in standard cubic
feet per minute (SCFM). Mass flow is also given in some of
the figures in terms of nondimensional flow coefficient, an-
nulus-averaged inlet axial velocity divided by tip speed.

Because it was of interest 1o operate with the movabie plenum
wall in the optimized as well as in the nonoptimized config-
urations, speedlines for the movable wall system were recorded
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with various levels of wall damping. The wall was operated at
the theoretically optimized configuration (W = 0.11, @ =
0.51, F = 1.5) as well as at values of { = 2.25 and 1.0

The steady-state compressor performance map for the three
mowable wall configurations and the fixed wall system is shown
in Fig. 14. The steady-state pressure ratio is unaffected by the
presence of the moving wall in the stable flow range of the
fixed wall system, but the surge line is moved to the left sub-
stantially. Also, the degree of surge suppression achieved is
dependent on the movable wall contrcl parameters, as pre-
dicted. The optimized configuration performed the best, with
the performance of the other two configurations decreasing as
one moved farther from optimum. A surge line recorded for
the movable plenum wall system with a lower than optimum
damping ratio ({ = 0.75) confirmed that movement in either
direction in parameter space away from the optimal damping
ratio was destabilizing.

Figure 15 shows the root-mean-square value of the fluctua-
tions in plenum pressure versus mass flow coefficient for the
fixed wall system and the optimized movable plenum wall
system at B = 0.91 (90K speediine). On the negative sioped
region of the speedline (above ¢ = 0.155), the rms pressure
fluctuations for fixed and movable wall systems are the same.
However, small-amplitude limit cycles exist in the stabilized
region. Based on the results of numerical calculations, these
limit cycles can be attributed to Coulomb friction in the wall
motion and pressure equilization leakage. Small amplitude

OCTOBER 1991, Vol. 113/ 717

o ——y T —




HOK]

Pressurs Ratio

T T Y T T T T T Y
] 40 L ] 12 180 00
Mass Flow (SCFM)

Fig. 18 Pradicted and measured stadifity iimits; compressor charac-
teristics approximated by third-order fit

limit cycles also occur over a limited range of mass fiow in the
fixed wall system prior to deep surge; these, however, appear
to be a result of nonlinearities in the compressor and throttie
characteristics.

Figure 16 shows predicted and experimentally determined
surge lines for the rigid wall and for the optimized system.
The predicted surge line is based on the linear instability point
as determined by the eigenvaiue stability analysis described
previously. The experimental surge line is defined as the onset
of deep surge (i.e., reverse flow); this also marked the points
at which the time-mean pressure ratio dropped sharply. The
compressor characteristics used are from a third-degree poly-
nomial curve fit of the speedlines measured by Pinsley (1988).

The experimental results can be compared to the nonlinear
calculations by examining the amplitudes of pressure fluctua-
tions in the plenum as a function of mass flow. As inputs to
the calculation, the friction force present during wall motion
was measured to be approximately 10 N and the leakage was
estimated to be equivalent to a 0.003 m diameter orifice plate.
The results of the calculation and experiment for the optimized
system operating at B = 0.9] are shown in Fig. 17, where the
amplitude of the small plenum pressure limit cycles before the
onset of deep surge are shown versus mass flow coefficient.
The linear stability boundary is also shown in the figure for
comparison. The linear analysis does not predict the small-
amplitude limit cycles in the stabilized region, but it is able to
portray accurately the onset point for deep surge. The reason
is that the oscillations are the resuit of nonlinear effects, de-
scribed above. If the nonlinear effects are small, which is
inherent in the experimental design, the linearly predicted sta-
bility limit corresponds to the onset of deep surge. The non-
linear analysis shows limit cycles in the stabilized region,
although the detailed relationship between mass flow and limit
cycle amplitude is not captured.

Transient Systém Behavior

Time-resolved measurements were recorded for the fixed
wall compression system and for the moving wall system at
three control parameter configurations. The measurements
were made on the 70K and 90K speedlines, corresponding to
B-parameters of 0.73 and 0.51. The data shown are from the
former, at the points marked on Fig. 18.

As noted previousiy, the flow through the compression sys-
temn becomes progressively more unsteady as the system ap-
proaches the surge line. To demonstrate this, the time resolved
nondimensional mass flow coefficient and the nondimensional
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pressure rise for the fixed wall system are shown in Fig. 19 for
three operating points (marked A-C in Fig. 18). The transient
mass flow measurements (taken in the inlet duct) are based on
a linearized hot-wire calibration and the large oscillations in
mass flow are presented for qualitative information only. The
data shown correspond to points in both stabie and unstable
operating regions.

For flows near point A, on the negative siope region of the
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compressor characteristic, stable operation with only slight
unsteadiness is exhibited.

Point B is slightly to the left of the peak of the compressor
characteristic. Smali-amplitude limit cycles (mild surge) are
seen. The frequency of the mild surge cycle is approximately
14.8 Hz, compared to the predicted Heimholtz frequency of
17.5 Hz.

At mass flows corresponding to points C and below, on the
positive slope region of the speedline, the compressor is in deep
surge. The time-averaged pressure rise and mass flow are de-
creased and the frequency of the oscillations has changed o0
approximately 10 Hz. The hot wire does not distinguish re-
versed flow, and the reversed flow regions are shown with a
dashed line. The decrease in frequency is associated with the
time needed for plenum blow-down and repressurization, as
described by Fink (1988).

With the moving wall system, small-amplitude limit cycles
existed over the stabilized region. Figure 20 shows the non-
dimensional mass flow, pressure rise, and corresponding non-
dimensional wall motion for the medium damping
configuration operating at the 70K speedline for four aperating
points, D, E, F, and G, shown on the compressor characteristic
in Fig. 18.

Point D is in smooth operation on the negatively sloped
region of the map. The steady-state and unsteady behavior is
similar to point A for the fixed wall configuration. The position
of the wall is shown to be stationary, indicating that the dis-
turbances in the stable system are not large enough to overcome
the wall friction.

Points E and F are located on the positively sloped, stabilized
region of the characteristic and exhibit small amplitude Limit
cycles. The maximum wall motion required to stabilize the
system is approximately 0.1 percent of the plenum volume and
the power dissipated is approximately 0.05 percent of the steady
power needed to drive the compressor.

At point G, in deep surge, the pressure and mass flow traces
are similar in amplitude to those with the fixed wall, although
the fluctuations have a much lower natural frequency (4-5
Hz). Also, in deep surge, the walil is shown to be hitting the
displacement limiters, as indicated by the flat spots on the time
trace of the wall motion.

Introduction of a movable pfenum wall can also eliminate
deep surge when wall motion is initiated during an existing
fixed wall surge cycie. This is demonstrated by the time history
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shown in Fig. 21, where fixed wall surge is suppressed by
equalizing the auxiliary and main plepum pressures, thus freeing
the wall from the displacement limiters. The time traces in Fig.
21 show the wall bouncing on the stops as the auxiliary plenum
pressure equalizes. When the wall clears the stops, the deep
surge cycle is suppressed. Although not shown, the wall con-
tinues to move toward its steady-state equilibrium position as
the pressures in the auxiliary and main plenums equalize.
Two other points should be made about the time histery
shown in Fig. 21. First, the time scale over which the surge
suppression occurs is considerably longer than any time scale
associated with the system oscillations because it is set by the
filling time (through the small equalization tube} of the aux-
iliary plenum. Second, as seen in previous figures, the deep
surge regime is one in which the oscillations are strongly non-
linear, with mass flow oscillations greater than the time av-
eraged mass flow. This indicates that the use of tailored
structure can suppress surge even when the oscillations have
large amplitude. In this connection it should be noted that
similar behavior has been found by Pinsley et al. (1991) and
Ffowes Williams and Huang (1989) using different active con-
trol schemes. Such behavior emphasizes that successful use of
dynamic control is not restricted to the small amplitude regime.

Dynamic Response of System Components

Compressor Behavior. One of the major assumptions used
in modeling the compression system is that the compressor
remains on its steady-state characteristic during transient op-
eration, at least for frequencies on the order of the Heimholtz
frequency. To check this, the unsteady pressure rise versus
mass flow relation (i.e., the compressor transfer function) can
be calculated directly from the unsteady data and compared
to the quasi-steady slopes. The unsteady data were taken from
operating points exhibiting small amplicude limit cycles. The
instantaneous pressure rise versus mass flow siope was deter-
mined from measurements of inlet mass flow and plenum
pressure, due corrections being made for the inertia of the fluid
in the injet duct. Only self-excited oscillations were examined,
so that measurements were obtained only at or near the system
resonant frequency where there was an acceptable signal-to-
noise ratio.
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The compressor slope, as measured, yielded a real and im-
aginary part. The real part represents the instantaneous slope
of the compressor characteristic. The imaginary part can be
viewed as a lag term, similar to that discussed by Fink (1988),
which accounts in a rudimentary fashion for the unsteady
aerodynamics within the compressor. The real part of the trans-
fer function is plotted versus steady state mass flow coefficient
for the 70K and 90K speedlines in Fig. 22. The data are from
both fixed and movable wall systems, indicating that, as would
be expected, the presence of the wall has no roticeable effect
on the instantaneous characteristic slope. Also plotted in the
figure are the slopes resulting from two methods of fitting the
steady-state data; the derivative of a third-order polynomial
curve fit, and a third-order polynomial fit of the derivaiive of
a cubic spline fit of the steady-state compressor data. (It is
important to note that, as can be inferred from Fig. 22, accurate
determination of the slope is difficult to do.) As shown, the
compressor characteristic slopes determined from the steady-
state data and those determined from unsteady data are in
reasonable agreement. In particular, the unsteady data fall
within the variance between the two steady-state slopes cal-
culated by curve fits. The assumption of quasi-steady behavior
thus appears to be an adequate representation of the instan-
taneous compressor slope over the range of flow coefficients
investigated.

The time lag for both the 70K and 90K speedlines was ap-
proximately 5-10 ms, corresponding to 0.065-0.13 Helmholtz
resonator periods. The compressor throughflow time can be
estimated at approximately 3.0 ms. The lag term is thus on
the order of the throughflow time of the compressor and it
seems plausible to attribute the lag to unsteady aerodynamic
effects within the compressor passages. This is in agreement
with the conclusions of Fink (1988), who determined that a
iag term on the order of compressor throughflow time was
needed for agreement between the predicted and experimental
behavior of a compression system in deep surge. Fink also
found that a lag term of this order should have a negligible

effect on system stability over the range of B-parameter in-

vestigated, so it appears that the quasi-steady compressor slope
is adequate for predicting the onset of surge.

Another assumption used in the present treatment is that
the wheel speed remains constant for perturbations in mass
flow and pressure rise. This is not strictly correct because
pressure and mass flow perturbations vary the power require-
ments of the compressor, and hence cause the wheel speed to
vary. Fink (1988) assessed this assumption and showed that
variable wheel speed had a stabilizing effect on the compression
system. The degree of stabilization was shown to be a function
of a nondimensional parameter, defined as
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where [ is the moment of inertia of the wheel angd Ry 15 the
tip radius. Using Fink’s resuits, vanauoas in whee! speed were
found to have negiigible effect on the stability of the compres-
sion system used in the present experiments.

An alternative way to address this point is to note that if
the wheel speed and pressure fluctuations were strongly cou-
pled, the nondimensional pressure rise and wheel speed van-
ations during mild surge would be roughly the same order.
However, for a typical (say 2.5 percent rms) pressure fluctua.
tion, the measured wheel speed fluctuations are only 0.2 per-
cent, an order of magnitude less. The assumption of constant
wheel speed is thus adequate for modeling the small pertur-
bation response, and hence linear stability, of the compression
system.

Wheel inertia parameter =

Conclusions

Dynamic control using tailored structure has been shown to
be effective in suppressing ceatrifugal compressor surge. The
use of a movable plenum wall shifted the surge line 10 the lef:
roughly 25 percent in flow over a significant portion of the
corrected speed range examined. The effectiveness of surge
suppression is a function of a set of nondimensional param-
eters, which govern the aeroelastic coupling of the wall 10 the
compression system dynamics.

The present scheme was found to be robust, suppressing
surge over a wide range of operating conditions with no ad-
justments to the parameters. Use of a movable wall was also
demonstrated to lead to suppression of existing ¢highly non-
linear) surge cycles. In the stabilized region of the compressor
map, surge was suppressed with no time average change in the
CQmpressat operating point.

The amount of control action (wall motion) required is a
function of the nonlinearities in the wall dynamics, such as
Coulomb friction and leakage. For the opiimized configuration
investigated in this research, the nominai limit cycle wall mo-
tion in the stabilized region was roughly 0.1 percent of plenum
volume, with frequencies near the Helmholtz frequency. Pres-
sure fluctuations in the stabilized region were on the order of
0.5 percent of the mean pressure rise of the compressor.

Time-resolved data were used to verify some of the major
assumptions in the modeling of the compression system. Com-
pressor transfer function measurements showed that a quasi-
steady compressor characteristic gave a reasonable represen-
tation of the instantaneous compressor characteristic slope.
These measurement also indicated that the improvement in
surge margin is due to modification of the system dynamics,
rather than a result of modifying the compressor characteristics
by altering the local flow in the compressor. The smallness of
the measured wheel speed variations supported the predictions
that wheel speed variation wouid not significantly affect system
stability. - :

In general, all aspects of the experimental investigations
confirmed that the lumped parameter model of the compres-
sion system provided a useful description of the system dy-
namics, both with and without the movable plenum wall.

The physical mechanism responsible for the surge suppres-
sion with the flexible wall is unsteady energy dissipation due
to the wall motion.

The maximum stable compressor characteristic slope is bet-
ter measure of the effectiveness of this control scheme rather
than the minimum stable mass flow coefficient. The steady-
state mass flow coefficient has little effect, in an explicit way,
on the stability of the compression system with the movable
wall, and the dominant influence of mass flow is through the
relation between mass flow and compressor slope implied by
the compressor characteristic.

Transactions of the ASME




Nonlinear solution of the system equations showed the ex-
istence of small-amplitude limit cycles in the stabilized region
in agreement with measutement. These limit cycles were found
1o result primaruy from '“outomb friction and leakage.
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APPENDIX
Derivation of the Equations of Motion for the Movable Plenum
Wall System
Consider the compression system shown in Fig. 1{b). The
following assumptions are used: The flow in the inlet ducting
is one-dimensional, incompressible, inviscid, and unsteady; the
plenum pressure is spatially uniform and plenum processes are
isentropic; the fluid inertia in the throttle is negligible; the
compressor follows a quasi-steady characteristic; and the throt-
tle pressure drop mass flow relation is parabolic.
The momentum equation applied to the compressor duct
yields
L. dm,
Py+ AP~ Pyas =% —— 1
[ [ » £ " ar (A )
where L. is the equivalent length of the compressor duct. Mass
conservation in the plenum yields

d ( o, )
AL/ A8 1R
d{' ‘ (A2)

The pressure drop across the throtile can be written in terms
of the throttle mass flow as
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ap, =1 m: Al
i =T (Al

2 pA; '
Finally, the motion of the wall is given by

+

mq+cq +kq = (Po— Pyis gicoum) 45 (Ad)

where g is defined as the position of the wall away from the
equilibrium position of the wall.

Writing the fluid dynamic variables as mean (")) plus smail
perturbations (8( )) and linearizing the compressor and throitie
characteristics about a time-mean operaung point yields equa-
tions for the perturbation quantities:

dal.\ . . _ L d(émy) )
am émy éPp-Am oy {AS)
) . V,dsP, _ . diq
om, ~ by ==& —2 -
1y~ oy 5‘2, a1 +ppA, pr (A6)

In Eq. (A6), the isentropic assumption has been used, and
volume change has been expressed as the product of plenum
area A, and perturbation displacement §q.

We introduce the following nondimensional quantities:

m

¢=poA U T Wyl
AP, U
e B
2 0
T bn =224
5 Pl 2
w fL:_P_o M=:q

Using these equations, Eqs. (A5) and {A6) can be written as

@V, 1 dse
( L2 )6¢, 6¢=E-—d?'- (A7)

and
By B &
6¢|=Bd poM‘d (A8)
The throttle pressure drop equation can be written as
ay,
Sy = Py 8¢,
or (A9)
=32
¢
sy=2 (2¢)6¢1

For the wall motion, we deﬁne the following nondimensional

control parameters:
o 00AsLe
my,

raZﬂw,
0 =22

wy
The wall dynamics can then be written in nondimensional form
as;

d"z%! varQ e = wEs (A0
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Using the algebraic relation between 5y and 3o, the throttle
characteristic can be used 1o eliminate §¢ from the set of
nondimensional equations. In addition, we can define

For reference, we also note thar expanding the determinant
for the 2 x 2 stability matrix describing the fixed wall compres-
ston system leads 1o the charactenistic equation shown beiow:

dén
du= & 1 _
/,
as a nondimensional wail velocity to convert Eq. (Al0) into £+ W-B‘ 9'—!-’ S+ [l - ‘ g-:“) f-’-] =0
two first-order equations. Rearranging these equations, and 3;!’. B do do / 2y
making use of Eq. (A9), yields the following stability matrix: @
. - -
B(%) - -7:-..2:- 0 0
13 1;? 5182 |
—_ — — 0 - EE -z & 0
B2y B M 20| | = (ALD)
én 0
0 0 -5 1
23 Sv 0
| 0 WP = -0 -2tQ-s

The control parameters Q* and {* are referenced to the Dynamic instability occurs when the first term in brackets
Helmholtz frequency of the compression system, which varies  becomes negative. The condition for this is
slightly with operating conditions. They can be modified so
that they remain independent of operating conditions. Thus,

substitution of the following corrected control parameters yields av. > -—-1—-=
the stability matrix given as Eq. (10): o/ p2¥
¢
P
0=0" [Z2and¢=y /—2
Pp Py which is the fixed wall stability limit.
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D. Gysling, E.M. Greitzer, J. Dugundji

During the past year, dynamic control of rotating stall in axial flow compressors has been
successfully demonstrated. Based on results from a two-dimensional model of the rotating stall
dynamics of axial compressors, a device was designed and constructed to extend the stable flow of
a single-stage axial flow compressor. This control strategy modifies the unsteady, non-
axisymmetric fluid dynamics of the compression system with a circumferential array of discrete
jets located axially upstream of the compressor. The amount of high momentum fluid injected
upstream of the compressor is regulated by reed valves. The cantilevered reed valves, modeled in
their first cantilevered bending mode as mass-spring-damper systems, are driven by unsteady
pressure perturbations in the flow field upstream of the compressor. The reed valve dynamics
form an aeromechanical feedback loop that determines the coupling between the rotating stall
dynamics of the compression system and the high momentum air injected into the face of the
COMPressor.

The basic theory used in the design of this control strategy is similar to the theory used to
design the movable IGV control scheme, successfully used to stabilize rotating stall by Paduano
(1990) and Haynes (1992). However, several cistinct differences exist which will add to the
knowledge base for controlling rotating stall in axial flow compressors. The unique features of
this control strategy include:

1) Aeromechanical (or structural) feedback is employed for the first time.

2) The control law used is implemented on a local basis; previous methods have used modal-
based control laws.

3) Static pressure is used as the sensed variable; previous method have used mass flow as the
sensed variable.

4) The feedback law used is a second order, in time, dynamic compensator; previous methods

have used proportional control laws.




5) High momentum jet actuators are used for the first ime.

The effect of dynamic mass injecuon on the rotating sl dynamucs of the compression
system were analvzed using the Moore-Greitzer model. The modet consists of three basic
components: a potential upstream flow field, the compressor (with feedback incorporated), and a
rotational downstream flow field. The effect of the dynamic contro! strategy was incorporated by
modifying the pressure nse and mass flow boundary conditons across the compressor.

The high momentum fluid injected upstoream of the compressor was assurned 10 mix out
before entering the compressor, thereby modifying the local (around the circumference) total
pressure and mass flow entering the compressor. The feedback is incorporated by modeling the
reeds’ response 10 non-axisymmetric pressure p..turt.oons in the upstream flow field.

The stability of the compression systern was determined using a small perturbaton,
linearized eigenvalue analysis. With the dynanuc control Lrategy, the stability of the system to
non-axisymmetric disturbances is a function of the original compression system parameters plus a

set of contol parameters. These parameters are:

dy/do slope of compressor speedline
Au fluid inertia parameters

¢ mass flow coefficient

n harmonic number

w reed valve mass parameter

Q reed valve frequency parameter
& reed valve critical damping rato
¢oB injection velocity parameter

A parameter optimization study was performed which predicted that significant
swbilization could be achieved with physically realizable values for the control parameters. Based
on these results, a device was designed to match these non-dimensional control parameters for use
on the single-stage compressor at the Gas Turbine Lab. The physical device is a steel structure

housing 24 discrete reed valves placed on the casing wall immediately upstream of the




compressor. A schematic of the device is shown in Fig. 1. The reed valves were fabricated from
graphite epoxy composite material to achieve the low mass and relatively high frequency required
by the design study. Additonal, non-linear simulations indicated that minimizing the coulomb
friction in the reed valve motion was essential. To this end, low friction, adjustable, pneumatnc
dashpots were used to provide the damping for each reed valve. The high pressure air used for the
injection is supplied by a source external to the compressor through a single, variable pressure
supply plenum.

The compressor was instrumented to record steady-state and time-resolved measurements.
The steady-state data recorded includes compressor pressure rise, mass flow, and wheel speed,
and injected mass flow and momentum. A radial traverser is also available to measure the axial
velocity distribution and the inlet boundary layer. Additional instrumentation is available for
measuring time-resolved pressure, mass flow, and reed valve displacement.

Initial experimental results are as follows. Although the amount of steady-state mass flow
injected into the face of the compressor does not explicitly appear in the stability analysis,
experimentally it was found to significantly affect the stability boundary of the compression
system. This is due to the change in the steady-state pressure rise versus mass flow characteristic
resulting from the steady-state mass injection. Thus, in order to isolate the stability improvement
due to dynamic feedback, the increase in stable flow range due to dynamic feedback was
determined by comparing the stalling flow coefficient with the reed valves rigid to the stalling flow
coefficient with the reed valve free to respond to pressure perturbations. The comparison was
made with the same amount of steady-state mass injected. Figure 2 shows the stability boundary
for the compression system with and without structural feedback. As shown, the stable flow
range was increased by 7% in this case. This figure is representative of the largest flow range
extension achieved to date.

The two-dimensional theory predicts that increasing the momentum of the injected fluid
will increase the range extension. However, as the momentum of the injected fluid is increased,

the amount of stabilization due to dynamic feedback decreases. Research is continuing to resolve




e T

this issue.

Time-resolved pressure, mass flow, and reed deflection measurements are currently being
studied to further characterize the effects of dynamic mass injection. The time-resolved
measurements include:

1) stall inception transients

2) reed valve deflection / pressure transfer functions

3) upstream mass flow / pressure transfer functions

4) hub and tip hot-wire traces to determine three-dimensionality of flow field.

Although the effects of the dynamic mass injection control strategy developed in the
research have not been fully characterized at this point, initial results show that this control strategy

is a viable method to extend the stable flow range of compression systems.
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